Abstract

We introduce a method to determine the retinal nerve fiber layer (RNFL) thickness in OCT images based on anisotropic noise suppression and deformable splines. Spectral-Domain Optical Coherence Tomography (SDOCT) data was acquired at 29 kHz A-line rate with a depth resolution of 2.6 μm and a depth range of 1.6 mm. Areas of 9.6×6.4 mm2 and 6.4×6.4 mm2 were acquired in approximately 6 seconds. The deformable spline algorithm determined the vitreous-RNFL and RNFL-ganglion cell/inner plexiform layer boundary, respectively, based on changes in the reflectivity, resulting in a quantitative estimation of the RNFL thickness. The thickness map was combined with an integrated reflectance map of the retina and a typical OCT movie to facilitate clinical interpretation of the OCT data. Large area maps of RNFL thickness will permit better longitudinal evaluation of RNFL thinning in glaucoma.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  2. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef]
  3. N. Nassif, B. Cense, B. H. Park, S .H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
    [CrossRef] [PubMed]
  4. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>
    [CrossRef] [PubMed]
  5. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  6. R. R. A. Bourne, F. A. Medeiros, C. Bowd, K. Jahanbakhsh, L. M. Zangwill, and R. N. Weinreb, "Comparability of retinal nerve fiber layer thickness measurements of optical coherence tomography instruments," Invest. Ophthalmol. Visual Sci. 46, 1280-1285 (2005).
    [CrossRef]
  7. P. Carpineto, M. Ciancaglini, E. Zuppardi, G. Falconio, E. Doronzo, and L. Mastropasqua, "Reliability of nerve fiber layer thickness measurements using optical coherence tomography in normal and glaucomatous eyes," Ophthalmology 110, 190-195 (2003).
    [CrossRef] [PubMed]
  8. A. Aydin, G. Wollstein, L. L. Price, J. G. Fujimoto, and J. S. Schuman, "Optical coherence tomography assessment of retinal nerve fiber laver thickness changes after glaucoma surgery," Ophthalmology 110, 1506-1511 (2003).
    [CrossRef] [PubMed]
  9. V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, "Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes," Ophthalmology 110, 177-189 (2003).
    [CrossRef] [PubMed]
  10. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, "Macular segmentation with optical coherence tomography," Invest. Ophthalmol. Visual Sci. 46, 2012-2017 (2005).
    [CrossRef]
  11. D. Koozekanani, K. Boyer, and C. Roberts, "Retinal thickness measurements from optical coherence tomography using a Markov boundary model," IEEE Trans. Medical Imag. 20, 900-916 (2001).
    [CrossRef]
  12. C. Y. Xu, and J. L. Prince, "Snakes, shapes, and gradient vector flow," IEEE Trans. Image Process. 7, 359-369 (1998).
    [CrossRef]
  13. M. Kass, A. Witkin, and D. Terzopoulos, "Snakes - Active Contour Models," Int. J. Comput. Vis. 1, 321-331 (1987).
    [CrossRef]
  14. B. Cense, N.A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435</a>.
    [CrossRef] [PubMed]
  15. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953</a>
    [CrossRef] [PubMed]
  16. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004),<a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a>.
    [CrossRef] [PubMed]
  17. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, "Spectral resolution and sampling issues in Fouriertransform spectral interferometry," J. Opt. Soc. Am. B - Opt. Phys. 17, 1795-1802 (2000).
    [CrossRef]
  18. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Autofocus algorithm for dispersion correction in optical coherence tomography," Appl. Opt. 42, 3038-3046 (2003).
    [CrossRef] [PubMed]
  19. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media," Appl. Opt. 42, 204-217 (2003).
    [CrossRef] [PubMed]
  20. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a>.
    [CrossRef] [PubMed]
  21. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, "Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography," Opt. Express 9, 610-615 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-12-610">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-12-610<a/>.
    [CrossRef] [PubMed]
  22. N. V. Iftimia, B. E. Bouma, J. F. de Boer, B. H. Park, B. Cense, and G. J. Tearney, "Adaptive ranging for optical coherence tomography," Opt. Express 12, 4025-4034 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4025">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4025</a>.
    [CrossRef] [PubMed]
  23. R. Daniel Ferguson, D.X.H., Nicusor V. Iftimia, Karim Slaoui, Gadi Wollstein, Hiroshi Ishikawa, Michelle L. Gabriele, Joel S. Schuman, "Three-dimensional retinal maps with tracking optical coherence tomography (TOCT)," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, J.A.I.Valery V. Tuchin, James G. Fujimoto, eds., Proc. SPIE 5690, 66-71, (2005).
    [CrossRef]
  24. R. Barrett, M. B., T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (SIAM, Philadelphia, PA, 1994).
    [CrossRef]
  25. R. C. K. Chan, J. Hemphill, L. C. Lees, R. S. Karl, W. C., "Anisotropic edge-preserving smoothing in carotid B-mode ultrasoundfor improved segmentation and intima-media thickness (IMT) measurement," in IEEE Computers in Cardiology 2000 (IEEE, Cambridge, MA, USA, 2000), pp. 37-40.
  26. R. C. K. Chan, K. J., Karl W. C., Lees R. S., Castanon D. A., "A variational energy approach for estimating vascular structure and deformation from B-mode ultrasound imagery," in IEEE International Conference on Image Processing (IEEE, Vancouver, BC, Canada, 2000), pp. 160-163.
  27. Shuliang Jiao, R.K., Xiangrun Huang, Giovanni Gregori, and Carmen A. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-444">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-444</a>.
    [CrossRef] [PubMed]
  28. F. Vrabec, "Temporal Raphe of Human Retina," Am. J. Ophthalmol. 62, 926-938 (1966).
    [PubMed]
  29. T. Sakai, K. Sano, K. Tsuzuki, M. Ueno, and Y. Kawamura, "Temporal raphe of the retinal nrve-fiber layer revealed by medullated fibers," Jpn. J. Ophthalmol. 31, 655-658 (1987).
    [PubMed]

Am. J. Ophthalmol.

F. Vrabec, "Temporal Raphe of Human Retina," Am. J. Ophthalmol. 62, 926-938 (1966).
[PubMed]

Appl. Opt.

IEEE Computers in Cardiology 2000

R. C. K. Chan, J. Hemphill, L. C. Lees, R. S. Karl, W. C., "Anisotropic edge-preserving smoothing in carotid B-mode ultrasoundfor improved segmentation and intima-media thickness (IMT) measurement," in IEEE Computers in Cardiology 2000 (IEEE, Cambridge, MA, USA, 2000), pp. 37-40.

IEEE Intn'l Conf. on Image Processing

R. C. K. Chan, K. J., Karl W. C., Lees R. S., Castanon D. A., "A variational energy approach for estimating vascular structure and deformation from B-mode ultrasound imagery," in IEEE International Conference on Image Processing (IEEE, Vancouver, BC, Canada, 2000), pp. 160-163.

IEEE Trans. Image Process.

C. Y. Xu, and J. L. Prince, "Snakes, shapes, and gradient vector flow," IEEE Trans. Image Process. 7, 359-369 (1998).
[CrossRef]

IEEE Trans. Medical Imag.

D. Koozekanani, K. Boyer, and C. Roberts, "Retinal thickness measurements from optical coherence tomography using a Markov boundary model," IEEE Trans. Medical Imag. 20, 900-916 (2001).
[CrossRef]

Int. J. Comput. Vis.

M. Kass, A. Witkin, and D. Terzopoulos, "Snakes - Active Contour Models," Int. J. Comput. Vis. 1, 321-331 (1987).
[CrossRef]

Invest. Ophthalmol. Visual Sci.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, "Macular segmentation with optical coherence tomography," Invest. Ophthalmol. Visual Sci. 46, 2012-2017 (2005).
[CrossRef]

R. R. A. Bourne, F. A. Medeiros, C. Bowd, K. Jahanbakhsh, L. M. Zangwill, and R. N. Weinreb, "Comparability of retinal nerve fiber layer thickness measurements of optical coherence tomography instruments," Invest. Ophthalmol. Visual Sci. 46, 1280-1285 (2005).
[CrossRef]

J. Biomed. Opt.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef]

J. Opt. Soc. Am. B - Opt. Phys.

C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, "Spectral resolution and sampling issues in Fouriertransform spectral interferometry," J. Opt. Soc. Am. B - Opt. Phys. 17, 1795-1802 (2000).
[CrossRef]

Jpn. J. Ophthalmol.

T. Sakai, K. Sano, K. Tsuzuki, M. Ueno, and Y. Kawamura, "Temporal raphe of the retinal nrve-fiber layer revealed by medullated fibers," Jpn. J. Ophthalmol. 31, 655-658 (1987).
[PubMed]

Ophthalmology

P. Carpineto, M. Ciancaglini, E. Zuppardi, G. Falconio, E. Doronzo, and L. Mastropasqua, "Reliability of nerve fiber layer thickness measurements using optical coherence tomography in normal and glaucomatous eyes," Ophthalmology 110, 190-195 (2003).
[CrossRef] [PubMed]

A. Aydin, G. Wollstein, L. L. Price, J. G. Fujimoto, and J. S. Schuman, "Optical coherence tomography assessment of retinal nerve fiber laver thickness changes after glaucoma surgery," Ophthalmology 110, 1506-1511 (2003).
[CrossRef] [PubMed]

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, "Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes," Ophthalmology 110, 177-189 (2003).
[CrossRef] [PubMed]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express

B. Cense, N.A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435</a>.
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953</a>
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004),<a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a>.
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>
[CrossRef] [PubMed]

Shuliang Jiao, R.K., Xiangrun Huang, Giovanni Gregori, and Carmen A. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-444">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-444</a>.
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a>.
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, "Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography," Opt. Express 9, 610-615 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-12-610">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-12-610<a/>.
[CrossRef] [PubMed]

N. V. Iftimia, B. E. Bouma, J. F. de Boer, B. H. Park, B. Cense, and G. J. Tearney, "Adaptive ranging for optical coherence tomography," Opt. Express 12, 4025-4034 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4025">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4025</a>.
[CrossRef] [PubMed]

Opt. Lett.

Proc. SPIE, 2005

R. Daniel Ferguson, D.X.H., Nicusor V. Iftimia, Karim Slaoui, Gadi Wollstein, Hiroshi Ishikawa, Michelle L. Gabriele, Joel S. Schuman, "Three-dimensional retinal maps with tracking optical coherence tomography (TOCT)," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, J.A.I.Valery V. Tuchin, James G. Fujimoto, eds., Proc. SPIE 5690, 66-71, (2005).
[CrossRef]

SIAM, 1994

R. Barrett, M. B., T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (SIAM, Philadelphia, PA, 1994).
[CrossRef]

Supplementary Material (8)

» Media 1: MOV (1988 KB)     
» Media 2: MOV (2393 KB)     
» Media 3: MOV (1908 KB)     
» Media 4: MOV (1326 KB)     
» Media 5: MOV (14357 KB)     
» Media 6: MOV (14531 KB)     
» Media 7: MOV (10992 KB)     
» Media 8: MOV (7325 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Intermediate steps in finding the RNFL thickness. (a) binary edge image obtained from the gradient magnitude of the retinal cross-section; (b) AB - red line, obtained from the multiresolution deformable spline; (c) smoothed field f; (d) edge field s calculated as the rescaled (between 0 and 1) magnitude of the image gradient; (e) binary intensity mask obtained using mean(f) - std(f) as threshold; (f) mean RPE (red dots) estimated between the blue dots and filtered mean RPE (black line) for identifying the blood vessels’ position; (g) dilated and eroded edge field in the interest area; (h) thinned edge field without vertical edges and with only positive edges; (i) initial guess of PB (red dots) and its filtered version; (j) valid A-lines after the deformable spline algorithm; (k) interpolated and median filtered PB; l) retinal cross-section with RNFL boundaries, AB - red line, PB - blue line.

Fig. 2.
Fig. 2.

Movie of the OCT scan showing the anterior (red) and posterior (blue) boundary of the RNFL a) including the ONH and the fovea (1.99 MB), and b) centered on the foveal pit (2.39 MB). The movies consist of 170 (a) and 180 (b) frames, respectively, displayed in a reversed-contrast logarithmic gray-scale at 30 fps. Each frame has a size of 8.85×1.2 mm2 (a) and 6.07×0.786 mm2 (b), respectively. The vertical size was increased by a factor of 4.65. (14.4 MB version (a) and 14.5 MB version (b))

Fig. 3.
Fig. 3.

Fundus image (left), and integrated reflectance image (right) for the same eye. The size of the image is 8.85×5.73 mm2.

Fig. 4.
Fig. 4.

Angiogram (left) and integrated reflectance image (right) for the same eye. The size of the image is 6.07×5.76 mm2.

Fig. 5.
Fig. 5.

RNFL thickness map. The dark blue areas correspond to the ONH (right) and fovea (left), and indicate no RNFL thickness. The dark red areas indicate a maximum thickness of 177 μm. The color bar is scaled in microns.

Fig. 6.
Fig. 6.

Movie (1.91 MB) with combined integrated reflectance map (top left), RNFL thickness map (bottom left), and retinal cross-sectional images corrected for motion artifacts (11 MB version). The color scheme for the RNFL thickness map is scaled in microns, dark blue meaning no thickness, and dark red being a maximum of 177 μm, as shown in Fig. 5. The movie consists of 170 frames displayed at 30 fps. Each map has a size of 8.85×5.73 mm2. The vertical size of the cross-sectional images (1.2 mm) was increased by a factor of 4.65.

Fig. 7.
Fig. 7.

Movie (1.33 MB) with combined integrated reflectance map (top left), RNFL thickness map (bottom left), and retinal cross-sectional images corrected for motion artifacts (7.33 MB version). The color map for the RNFL thickness map is scaled in microns, dark blue meaning no thickness, and dark red being 105 μm. The movie consists of 180 frames displayed at 30 fps. Each map has a size of 6.07×5.76 mm2. The vertical size of the cross-sectional images (0.786 mm) was increased by a factor of 4.65.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E f s = ( β f g 1 + α ( 1 s ) 2 f 1 + ρ 2 S 2 2 + 1 ρ s 2 ) dA

Metrics