Abstract

Stimulated Brillouin scattering in optical fibers can be used to measure strain or temperature in a distributed manner. Brillouin optical time domain analysis (BOTDA) is the most common sensor system based on the Brillouin scattering. This paper presents the experimental analysis of the characteristics of Brillouin gain spectrum (BGS) influenced by the width of launched pulse. Brillouin strain coefficient is also examined for the different pulse widths, which is important to apply a Brillouin scattering-based sensor to a structural health monitoring. Experimental results showed that not only the Brillouin linewidth and gain but also the Brillouin frequency were dependent on the pulse widths.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. Culshaw and J. P. Dakin, Eds., Optical Fiber Sensors (Artech House, Boston, London, 1989), I and II.
  2. T. L. Tang, �??Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,�?? J. Appl. Phys. 37, 2945-2955 (1966).
    [CrossRef]
  3. T. Horiguchi and M. Tateda, �??Tensile strain dependence of Brillouin frequency shift in silica optical fibers,�?? IEEE Photonics Technol. Lett. 1, 107-108 (1989).
    [CrossRef]
  4. Y. R. Shen, The Principles of Nonlinear Optics, (John Wiley & Sons, New York, 1984)
  5. W. Kaiser and M. Maier, �??Stimulated Rayleigh, Brillouin and Raman Spectroscopy,�?? in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, 1972) 2, 1077-1150.
  6. T. Horiguchi and M. Tateda, �??BOTDA-Nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory,�?? J. Lightwave Technol. 7, 1170-1176 (1989).
    [CrossRef]
  7. J. Smith, A. Brown, M. DeMerchant, X. Bao, �??Pulse width dependence of the Brillouin loss spectrum,�?? Opt. Comm. 168, 393-398 (1999).
    [CrossRef]
  8. A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, P. Robot, �??Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,�?? Proceedings of OFS�??97 16, 324-327 (1997).
  9. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, Boston, 1989), chap. 9.
  10. S. B. Cho, J. J. Lee, I. B. Kwon, �??Temperature compensation of a fiber optic strain sensor based on Brillouin scattering,�?? J. Opt. Soc. Kor. 8, 168-173 (2004).
    [CrossRef]
  11. T. Kurashima, T. Horiguchi, M. Tateda, �??Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers,�?? Appl. Opt. 29, 2219-2222 (1990).
    [CrossRef] [PubMed]
  12. M. Niklès, L. Thévenaz, P. A. Robert, �??Brillouin gain spectrum characterization in single-mode optical fibers,�?? J. Lightwave Technol. 15, 1842-1851 (1997).
    [CrossRef]

Appl. Opt.

IEEE Photonics Technol. Lett.

T. Horiguchi and M. Tateda, �??Tensile strain dependence of Brillouin frequency shift in silica optical fibers,�?? IEEE Photonics Technol. Lett. 1, 107-108 (1989).
[CrossRef]

J. Appl. Phys.

T. L. Tang, �??Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,�?? J. Appl. Phys. 37, 2945-2955 (1966).
[CrossRef]

J. Lightwave Technol.

T. Horiguchi and M. Tateda, �??BOTDA-Nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory,�?? J. Lightwave Technol. 7, 1170-1176 (1989).
[CrossRef]

M. Niklès, L. Thévenaz, P. A. Robert, �??Brillouin gain spectrum characterization in single-mode optical fibers,�?? J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

J. Opt. Soc. Kor.

S. B. Cho, J. J. Lee, I. B. Kwon, �??Temperature compensation of a fiber optic strain sensor based on Brillouin scattering,�?? J. Opt. Soc. Kor. 8, 168-173 (2004).
[CrossRef]

OFS 1997

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, P. Robot, �??Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,�?? Proceedings of OFS�??97 16, 324-327 (1997).

Opt. Comm.

J. Smith, A. Brown, M. DeMerchant, X. Bao, �??Pulse width dependence of the Brillouin loss spectrum,�?? Opt. Comm. 168, 393-398 (1999).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, Boston, 1989), chap. 9.

B. Culshaw and J. P. Dakin, Eds., Optical Fiber Sensors (Artech House, Boston, London, 1989), I and II.

Y. R. Shen, The Principles of Nonlinear Optics, (John Wiley & Sons, New York, 1984)

W. Kaiser and M. Maier, �??Stimulated Rayleigh, Brillouin and Raman Spectroscopy,�?? in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, 1972) 2, 1077-1150.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Experimental setup for Brillouin gain spectrum measurements. (ISO = isolator, PC = polarization controller, PS = polarization scrambler, DET = detector, ATT = attenuator, CIR = circulator, FUT = fiber under test.)

Fig. 2.
Fig. 2.

Typical configuration and characteristics of pulses injected into the fiber.

Fig. 3.
Fig. 3.

BGS obtained with varying pulse widths.

Fig. 4.
Fig. 4.

Brillouin linewidth (left) and Brillouin frequency (right) observed with varying pulse widths for different pulse powers.

Fig. 5.
Fig. 5.

Brillouin strain coefficients obtained with varying pulse widths.

Fig. 6.
Fig. 6.

Relationship between the Brillouin interaction length and the fiber excited time.

Fig. 7.
Fig. 7.

Configuration of the fiber under test.

Fig. 8.
Fig. 8.

BGS’s (left) and corresponding excited time (right) with respect to the pulse leading edge locations.

Fig. 9.
Fig. 9.

Brillouin linewidth (left) and frequency (right) with respect to the fiber excited time.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ν B = 2 n V a λ p
g B ( ν ) = g B ( ν B ) ( Δ ν B 2 ) 2 ( ν ν B ) 2 + ( Δ ν B 2 ) 2
g B ( ν B ) = g 0 = 2 π n 7 p 12 2 p ρ 0 V a Δ ν B
ν B ( Δ ε , Δ T ) = ν B 0 + C ε Δε + C T Δ T
S = 1 2 W × v g

Metrics