Abstract

We have investigated fault tolerant quantum key distribution experimentally, using four polarization encoding two-qubit states generated by spontaneous parametric down conversion. Collective noises on polarization and phase were simulated by passing the states through a half wave plate and a quarter wave pate. Error rate was calculated by measuring the two-qubit states in three basis. Our results show that the protocol is tolerant under collective random unitary noise.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. H. Bennett and G. Brassard, �??Quantum Cryptography: Public key distribution and coin tossing,�?? in Proc. of the IEEE Int. Conf. on Computers, Systems and Signal Processing, India (Institute of Electrical and Electronics Engineers, New York, 1984), PP. 175-179.
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, �??Quantum cryptography,�?? Rev. Mod. Phys. 74, 145-195(2002)
    [CrossRef]
  3. C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, �??Experimental quantum cryptography,�?? J. Cryptol. 5, 3-28(1992).
    [CrossRef]
  4. P.D. Townsend, J.G. Rarity, P.R. Tapster, �??Single photon interference in 10 km long optical fibre interferometer�?? Electronics Letters 29,, 634-635 (1993).
    [CrossRef]
  5. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, �??Quantum key distribution over 67km with a plug&play system,�?? New J. Phys. 4, 41.1-41.8(2002).
    [CrossRef]
  6. Z.L. Yuan and A.J. Shields, �??Continuous operation of a one-way quantum key distribution system over installed telecom fibre,�?? Opt. Exp. 13, 660-665(2005).
    [CrossRef]
  7. T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, �??Single-photon interference over 150km transmission using silica-based integrated-optic interferometers for quantum cryptography,�?? Jpn. J. Appl. Phys. 43, L1217-L1219 (2004).
    [CrossRef]
  8. C. Gobby, Z.L. Yuan, and A.J. Shields, �??Quantum key distribution over 122km standard telecom fiber,�?? Appl. Phys. Lett. 84, 3762-3764(2004).
    [CrossRef]
  9. A. Tomita, and K. Nakamura, �??Balanced, gated-mode photon detector for quantum-bit discrimination at 1550nm,�?? Optics letters 27, 1827-1829 (2002).
    [CrossRef]
  10. I. Marcikic, H. de Riedmatten, W.tittel, H. Zbinden, M. Legré, and N. Gisin, �??Distribution of time-bin entangled qubits over 50km of optical fiber,�?? Phys. Rev. Lett. 93, 180502(2004).
    [CrossRef] [PubMed]
  11. R.J. Hughes, J.E. Nordholt, D. Derkacs, and C.G. Peterson, �??Practical free-space quantum key distribution over 10km in daylight and at night,�?? New. J. Phys. 4, 43.1-43.14(2002).
    [CrossRef]
  12. K.J. Resch, M. Lindenthal, B. Blauensteiner, H.R. Bohm, et al., �??Distributing entanglement and single photons through an intra-city, free-space quantum channel,�?? Opt. Express 13, 202-209(2005).
    [CrossRef] [PubMed]
  13. M. Aspelmeyer, H.R. Bohm,T. Gyatso, et al., �??Long-distance free-space distribution of quantum entanglement,�?? Science, 301, 621-623(2003).
    [CrossRef] [PubMed]
  14. C.-Z. Peng, T. Yang, X.-H. Bao et al., �??Experimental free-space distribution of entangled photon pairs over 13km: Towards satellite-based global quantum communication,�?? Phys. Rev. Lett. 94, 150501(2005).
    [CrossRef] [PubMed]
  15. J.-C. boileau, D. Gottesman, R. Laflamme, D. Pooulin, and R.W. Spekkens, �??Robust polarization-based quantum key distribution over a collective-noise channel,�?? Phys. Rev. Lett. 92, 017901(2004).
    [CrossRef] [PubMed]
  16. X.-B. Wang �??Fault tolerant quantum key distribution protocol with collective random unitary noise,�?? quant-ph/0406100.
  17. Y.-K. Jiang, X.-B. Wang, B.-S. Shi, A. Tomita, �??Experimental verification of fault tolerant quantum key distribution protocol,�?? presented at The 12th Quantum Information Technology Symposium(QIT12), Atsugi, Japan, 12-13 May 2005.
  18. J.G. Rarity, P.R. Tapster, P.M. Gorman, and P. knight, �??Ground to satellite secure key exchange using quantum cryptography,�?? New J. Phys. 4, 82.1-82.21(2002).
    [CrossRef]
  19. P.G. kwiat, E.Waks, A.G. White, I.Appelbaum, P.H. Eberhard, �??Ultrabright source of polarization-entangled photons,�?? Phys. Rev. A. 60, R773-R776(1999).
    [CrossRef]
  20. P.G. Kwiat, A.J. Berglund, J.B. Altepeter, and A.G. White, Science 290, 498(2000); J.B. Altepeter, P.G. Hadley, S.M. Wendelden, A.J. Berglund, and P.G. Kwiat, �??Experimental investigation of a two-qubit decoherence-free subspace,�?? Phys. Rev. Lett. 92, 147901(2004).
    [CrossRef] [PubMed]

12th Quantum Information Technology (1)

Y.-K. Jiang, X.-B. Wang, B.-S. Shi, A. Tomita, �??Experimental verification of fault tolerant quantum key distribution protocol,�?? presented at The 12th Quantum Information Technology Symposium(QIT12), Atsugi, Japan, 12-13 May 2005.

Appl. Phys. Lett. (1)

C. Gobby, Z.L. Yuan, and A.J. Shields, �??Quantum key distribution over 122km standard telecom fiber,�?? Appl. Phys. Lett. 84, 3762-3764(2004).
[CrossRef]

Electronics Letters (1)

P.D. Townsend, J.G. Rarity, P.R. Tapster, �??Single photon interference in 10 km long optical fibre interferometer�?? Electronics Letters 29,, 634-635 (1993).
[CrossRef]

IEEE Int. Conf. on Computers, Systems (1)

C. H. Bennett and G. Brassard, �??Quantum Cryptography: Public key distribution and coin tossing,�?? in Proc. of the IEEE Int. Conf. on Computers, Systems and Signal Processing, India (Institute of Electrical and Electronics Engineers, New York, 1984), PP. 175-179.

J. Cryptol. (1)

C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, �??Experimental quantum cryptography,�?? J. Cryptol. 5, 3-28(1992).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, �??Single-photon interference over 150km transmission using silica-based integrated-optic interferometers for quantum cryptography,�?? Jpn. J. Appl. Phys. 43, L1217-L1219 (2004).
[CrossRef]

New J. Phys. (2)

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, �??Quantum key distribution over 67km with a plug&play system,�?? New J. Phys. 4, 41.1-41.8(2002).
[CrossRef]

J.G. Rarity, P.R. Tapster, P.M. Gorman, and P. knight, �??Ground to satellite secure key exchange using quantum cryptography,�?? New J. Phys. 4, 82.1-82.21(2002).
[CrossRef]

New. J. Phys. (1)

R.J. Hughes, J.E. Nordholt, D. Derkacs, and C.G. Peterson, �??Practical free-space quantum key distribution over 10km in daylight and at night,�?? New. J. Phys. 4, 43.1-43.14(2002).
[CrossRef]

Opt. Exp. (1)

Z.L. Yuan and A.J. Shields, �??Continuous operation of a one-way quantum key distribution system over installed telecom fibre,�?? Opt. Exp. 13, 660-665(2005).
[CrossRef]

Opt. Express (1)

Optics letters (1)

A. Tomita, and K. Nakamura, �??Balanced, gated-mode photon detector for quantum-bit discrimination at 1550nm,�?? Optics letters 27, 1827-1829 (2002).
[CrossRef]

Phys. Rev. A (1)

P.G. kwiat, E.Waks, A.G. White, I.Appelbaum, P.H. Eberhard, �??Ultrabright source of polarization-entangled photons,�?? Phys. Rev. A. 60, R773-R776(1999).
[CrossRef]

Phys. Rev. Lett. (3)

C.-Z. Peng, T. Yang, X.-H. Bao et al., �??Experimental free-space distribution of entangled photon pairs over 13km: Towards satellite-based global quantum communication,�?? Phys. Rev. Lett. 94, 150501(2005).
[CrossRef] [PubMed]

J.-C. boileau, D. Gottesman, R. Laflamme, D. Pooulin, and R.W. Spekkens, �??Robust polarization-based quantum key distribution over a collective-noise channel,�?? Phys. Rev. Lett. 92, 017901(2004).
[CrossRef] [PubMed]

I. Marcikic, H. de Riedmatten, W.tittel, H. Zbinden, M. Legré, and N. Gisin, �??Distribution of time-bin entangled qubits over 50km of optical fiber,�?? Phys. Rev. Lett. 93, 180502(2004).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, �??Quantum cryptography,�?? Rev. Mod. Phys. 74, 145-195(2002)
[CrossRef]

Science (2)

M. Aspelmeyer, H.R. Bohm,T. Gyatso, et al., �??Long-distance free-space distribution of quantum entanglement,�?? Science, 301, 621-623(2003).
[CrossRef] [PubMed]

P.G. Kwiat, A.J. Berglund, J.B. Altepeter, and A.G. White, Science 290, 498(2000); J.B. Altepeter, P.G. Hadley, S.M. Wendelden, A.J. Berglund, and P.G. Kwiat, �??Experimental investigation of a two-qubit decoherence-free subspace,�?? Phys. Rev. Lett. 92, 147901(2004).
[CrossRef] [PubMed]

Other (1)

X.-B. Wang �??Fault tolerant quantum key distribution protocol with collective random unitary noise,�?? quant-ph/0406100.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup used to investigate fault tolerant QKD.

Fig. 2.
Fig. 2.

Experimental measurement for the four two-qubit states |HV〉, |VH〉, and |ψ ±〉.

Fig. 3.
Fig. 3.

Bit-flip with two qubit states in the subspace {|HV〉, |VH〉} and polarization encoding single photon states.

Fig. 4.
Fig. 4.

Error rate measurement for |ψ -〉 under decoherence environment with half wave plate and quarter wave plate rotation.

Fig. 5.
Fig. 5.

Error rate for |ψ +〉 under decoherence environment introduced with half wave plate and quarter wave plate rotation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r b = sin 4 θ cos 4 θ + sin 4 θ ,
t ψ ψ + = ε x + ε y ε z 2 ( 1 ε z ) .
t ψ + ψ = ε x + ε y ε z 2 ( 1 ε z ) .

Metrics