Abstract

Exact knowledge of the numerical aperture is crucial in many applications using high-aperture objectives such as confocal microscopy, optical trapping, or advanced sub-wavelength imaging methods. We propose and apply a precise and straightforward method for measuring this fundamental parameter of microscope objectives with numerical apertures above unity. Our method exploits the peculiarities of the fluorescence emission of molecules at a glass/air interface.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. M. Goodwin, W. P. Ambrose, and R. A. Keller �??Single-molecule detection in liquids by laser-induced fluorescence,�?? Acc. Chem. Res. 29, 607-613 (1996).
    [CrossRef]
  2. J. Enderlein, and M. Böhmer �??Fluorescence spectroscopy of single molecules under ambient conditions: Methodology and technology,�?? Chem. Phys. Chem. 4, 792-808 (2003)
    [CrossRef]
  3. R. Rigler, and J. Widengren �??Ultrasensitive detection of single molecules by fluorescence correlation spectroscopy,�?? Bioscience 3, 180-183 (1990).
  4. P. Schwille �??Fluorescene correlation spectroscopy and its potential for intracellular applications,�?? Cell Biochem. Biophys. 34, 383-408 (2001).
    [CrossRef]
  5. A. Ashkin �??Optical trapping and manipulation of neutral particles using lasers,�?? Proc. Nat. Acad. Sci. 94, 4853-4860 (1997).
    [CrossRef] [PubMed]
  6. K. C. Neuman, and S. M. Block "Optical trapping," Rev. Sci. Instrum. 75, 2787-809 (2004).
    [CrossRef]
  7. D. R. Sandison, D. W. Piston, R. M. Williams, and W. W. Webb "Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes," Appl. Opt. 34, 3576-3588 (1995).
    [CrossRef] [PubMed]
  8. D. W. Piston "Choosing objective lenses; The importance of numerical aperture and magnification," Biol. Bull. 195, 1-4 (1998).
    [CrossRef] [PubMed]
  9. S. W. Hell, and H. K. Stelzer �??Properties of a 4Pi confocal fluorescence microscope,�?? J. Opt. Soc. Am. A 9, 2159-2166 (1992).
    [CrossRef]
  10. T. A. Klar, and S. W. Hell �??Subdiffraction resolution in far-field fluorescence microscopy,�?? Opt. Lett. 24, 954-956 (1999).
    [CrossRef]
  11. A. Schönle, and S. W. Hell �??Calculation of vectorial three-dimensional transfer functions in large-angle focusing systems,�?? J. Opt. Soc. Am. A 19, 2121-2126 (2002).
    [CrossRef]
  12. Neto P. A. Maia, and H. M. Nussenzveig "Theory of optical tweezers," Europhys. Lett. 50, 702-708 (2000).
    [CrossRef]
  13. C. J. R. Sheppard, M., Kawata Y. Gu, and S. Kawata "Three-dimensional transfer functions for high-aperture systems," J. Opt. Soc. Am. A 11, 593-598 (1994).
    [CrossRef]
  14. M. Böhmer, and J. Enderlein �??Orientation imaging of single molecules by wide-field epi-fluorescence microscopy,�?? J. Opt. Soc. Am. B 20, 554-559 (2003).
    [CrossRef]
  15. J. Enderlein, I. Gregor, D. Patra, T. Dertinger, and B. Kaupp �??Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration,�?? Chem. Phys. Chem. (2005) in press.
  16. M. Müller, and G. J. Brakenhoff �??Characterization of high-numerical-aperture lenses by spatial autocorrelation of the focal field,�?? Opt. Lett. 20, 2159-2162 (1995).
    [CrossRef] [PubMed]
  17. R. Juškaitis �??Characterizing high numerical aperture microscope objective lenses�?? in: Optical Imaging and Microscopy, Eds.: P. Török ad F.-J. Kao (Springer, 2003) pp. 21-43.
  18. W. Lehmann, and A. Wachtel �??Numerical apertures of light microscope objectives,�?? J. Microsc. 169, 89-90 (1993).
    [CrossRef]
  19. W. Lukosz �??Light emission by multipole sources in thin layers. I. Radiation patterns of electric and magnetic dipoles,�?? J. Opt. Soc. Am. 71, 744-754 (1981).
    [CrossRef]
  20. J. Enderlein, T. Ruckstuhl, and S. Seeger �??Highly efficient optical detection of surface-generated fluorescence,�?? Appl. Opt. 38, 724-732 (1999).
    [CrossRef]
  21. W. Schroeyers, R. Vallee, D. Patra, J. Hofkens, S. Habuchi, T. Vosch, M. Cotlet, K. Müllen, J. Enderlein, and F. C. De Schryver �??Fluorescence lifetimes and emission patterns probe the 3D orientation of the emitting chromophore in a multichromophoric system,�?? J. Am. Chem. Soc. 126, 14310-14311 (2004).
    [CrossRef] [PubMed]
  22. D. Patra, I. Gregor, and J. Enderlein �??Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies,�?? J. Phys. Chem. A 108, 6836-6841 (2004).
    [CrossRef]

Acc. Chem. Res. (1)

P. M. Goodwin, W. P. Ambrose, and R. A. Keller �??Single-molecule detection in liquids by laser-induced fluorescence,�?? Acc. Chem. Res. 29, 607-613 (1996).
[CrossRef]

Appl. Opt. (2)

Biol. Bull. (1)

D. W. Piston "Choosing objective lenses; The importance of numerical aperture and magnification," Biol. Bull. 195, 1-4 (1998).
[CrossRef] [PubMed]

Bioscience (1)

R. Rigler, and J. Widengren �??Ultrasensitive detection of single molecules by fluorescence correlation spectroscopy,�?? Bioscience 3, 180-183 (1990).

Cell Biochem. Biophys. (1)

P. Schwille �??Fluorescene correlation spectroscopy and its potential for intracellular applications,�?? Cell Biochem. Biophys. 34, 383-408 (2001).
[CrossRef]

Chem. Phys. Chem (2)

J. Enderlein, I. Gregor, D. Patra, T. Dertinger, and B. Kaupp �??Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration,�?? Chem. Phys. Chem. (2005) in press.

J. Enderlein, and M. Böhmer �??Fluorescence spectroscopy of single molecules under ambient conditions: Methodology and technology,�?? Chem. Phys. Chem. 4, 792-808 (2003)
[CrossRef]

Europhys. Lett. (1)

Neto P. A. Maia, and H. M. Nussenzveig "Theory of optical tweezers," Europhys. Lett. 50, 702-708 (2000).
[CrossRef]

J. Am. Chem. Soc. (1)

W. Schroeyers, R. Vallee, D. Patra, J. Hofkens, S. Habuchi, T. Vosch, M. Cotlet, K. Müllen, J. Enderlein, and F. C. De Schryver �??Fluorescence lifetimes and emission patterns probe the 3D orientation of the emitting chromophore in a multichromophoric system,�?? J. Am. Chem. Soc. 126, 14310-14311 (2004).
[CrossRef] [PubMed]

J. Microsc (1)

W. Lehmann, and A. Wachtel �??Numerical apertures of light microscope objectives,�?? J. Microsc. 169, 89-90 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

D. Patra, I. Gregor, and J. Enderlein �??Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies,�?? J. Phys. Chem. A 108, 6836-6841 (2004).
[CrossRef]

Opt. Lett (1)

M. Müller, and G. J. Brakenhoff �??Characterization of high-numerical-aperture lenses by spatial autocorrelation of the focal field,�?? Opt. Lett. 20, 2159-2162 (1995).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. Nat. Acad. Sci. (1)

A. Ashkin �??Optical trapping and manipulation of neutral particles using lasers,�?? Proc. Nat. Acad. Sci. 94, 4853-4860 (1997).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

K. C. Neuman, and S. M. Block "Optical trapping," Rev. Sci. Instrum. 75, 2787-809 (2004).
[CrossRef]

Other (1)

R. Juškaitis �??Characterizing high numerical aperture microscope objective lenses�?? in: Optical Imaging and Microscopy, Eds.: P. Török ad F.-J. Kao (Springer, 2003) pp. 21-43.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Angular distribution of emission into glass for isotropically oriented molecules in glass at an air/glass interface when excited by light circularly polarized within the plane of the interface. Emission maximum occurs at the angle of total internal reflection (TIR), indicated by light-red lines. (b) Intensity distribution of fluorescence within the back focal plane of an objective as a function of the distance ρ from the optical axis divided by the focal distance f of the objective. The vertical light-red lines show the position of TIR.

Fig. 2.
Fig. 2.

Principal scheme of the experimental set-up used for imaging the intensity distribution of fluorescence in the back focal plane of the objective. The imaging lens images the back focal plane of the objective onto the CCD camera. In the realized experimental set-up, this imaging was achieved by using the microscope’s tube lens (not shown) plus and additional lens.

Fig. 3.
Fig. 3.

(a) Measured intensity distribution in the back focal plane for the Olympus UApo/340 40× objective with nominal NA of 1.15. The barely visible black circle at the edge of the illuminated area is the determined out NA-determined cut-off of fluorescence collection, the cyan circle marks the position of the fluorescence discontinuity at the TIR-angle. (b) Same as Fig. 3(a), but for the Olympus PlanApo 60× objective with nominal NA of 1.4.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ TIR = asin ( n 0 n ) ,
ρ = f n sin θ
NA = ρ max ρ TIR

Metrics