Abstract

We report on the generation of self-similar pulses from an self-starting saturable absorber mirror (SAM) based environmentally stable fiber laser comprising only polarization maintaining (PM) fibers. Pulse energies of 1 nJ at a repetition rate of 17 MHz were obtained, which could be externally compressed to an autocorrelation width of 280 fs.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, �??Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers,�?? Phys. Rev. Lett. 84, 6010�??6013 (2000).
    [CrossRef] [PubMed]
  2. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, E.-B. Kley, H. Zellmer, and A. Tünnermann, "High-power femtosecond Yb-doped fiber amplifier," Opt. Express 10, 628�??638 (2002), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-628">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-628</a>.
    [PubMed]
  3. V. I. Kruglov, A. C. Peacock, and J. D. Harvey, �??Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,�?? J. Opt. Soc. Am. B 19, 461�??469 (2002).
    [CrossRef]
  4. I. N. Duling III, �??Subpicosecond all-fiber Erbium laser,�?? Electron. Lett. 27 544�??545 (1991).
    [CrossRef]
  5. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt. Lett. 18 1080�??1082 (1993).
    [CrossRef] [PubMed]
  6. K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, �??Soliton versus nonsoliton operation of fiber ring lasers,�?? Appl. Phys. Lett. 64, 149 (1994).
    [CrossRef]
  7. M. Hofer,M. E. Fermann, and L. Goldberg, �??High power side-pumped passively mode-locked Er-Yb fiber laser,�?? IEEE Photonics Technol. Lett. 10, 1247-1249 (1998).
    [CrossRef]
  8. L. Lefort, J. H. V. Price, D. J. Richardson, G. J. Sphler, R. Pashotta, U. Keller, A. R. Fry, and J.Weston, �??Practical low-noise stretched-pulse Yb3+-doped fiber laser,�?? Opt. Lett. 27, 291-293 (2002).
    [CrossRef]
  9. B. Ortac, A. Hideur, T. Chartier, M. Brunel, C. �?zkul, F. Sanchez, �??90 fs generation from a stretched-pulse ytterbium doped fiber laser,�?? Opt. Lett. 28, 1305 (2003).
    [PubMed]
  10. F. �?. Ilday, J. R. Buckley, H. Lim, F. W. Wise, W. G. Clark, �??Generation of 50-fs, 5-nJ pulses at 1.03 m from a wave-breaking-free fiber laser,�?? Opt. Lett. 28, 1365-1367 (2003).
    [CrossRef] [PubMed]
  11. J. Buckley, F. �?. Ilday, F. W. Wise, and T. Sosnowski, �??Femtosecond fiber lasers with pulse energies above 10 nJ,�?? Opt. Lett. 30, 1888 (2005).
    [CrossRef] [PubMed]
  12. F. �?. Ilday, J. R. Buckley, and F. W. Wise �??Self-Similar Evolution of Parabolic Pulses in a Laser,�?? Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  13. M. E. Fermann, L.-M. Yang, M. L. Stock, and M. J. Andrejco, �??Environmentally stable Kerr-type mode-locked erbium fiber laser producing 360-fs pulses,�?? Opt. Lett. 19, 43-45 (1994).
    [CrossRef] [PubMed]
  14. H. Lim, A. Chong, and F. W. Wise, "Environmentally-stable femtosecond ytterbium fiber laser with birefringent photonic bandgap fiber," Opt. Express 13, 3460�??3464 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3460">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3460</a>.
    [CrossRef] [PubMed]
  15. I. Hartl, G. Imeshev, L. Dong, G. C. Cho and M. E. Fermann, �??Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,�?? CLEO, Baltimore, paper CThG1, May 2005.
  16. www.batop.de
  17. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tünnermann, M. Jupé, and D. Ristau, "Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems," Appl. Opt. 42, 6934�??6938 (2003).
    [CrossRef] [PubMed]
  18. M. Guina, N. Xiang, A. Vainionpää, O. G. Okhotnikov, T. Sajavaara, and J. Keinonen, �??Self-starting stretched-pulse fiber laser mode locked and stabilized with slow and fast semiconductor saturable absorbers,�?? Opt. Lett. 26, 1809�??1811 (2001)
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, �??Soliton versus nonsoliton operation of fiber ring lasers,�?? Appl. Phys. Lett. 64, 149 (1994).
[CrossRef]

Electron. Lett. (1)

I. N. Duling III, �??Subpicosecond all-fiber Erbium laser,�?? Electron. Lett. 27 544�??545 (1991).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

M. Hofer,M. E. Fermann, and L. Goldberg, �??High power side-pumped passively mode-locked Er-Yb fiber laser,�?? IEEE Photonics Technol. Lett. 10, 1247-1249 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (7)

Phys. Rev. Lett. (2)

F. �?. Ilday, J. R. Buckley, and F. W. Wise �??Self-Similar Evolution of Parabolic Pulses in a Laser,�?? Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, �??Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers,�?? Phys. Rev. Lett. 84, 6010�??6013 (2000).
[CrossRef] [PubMed]

Other (2)

I. Hartl, G. Imeshev, L. Dong, G. C. Cho and M. E. Fermann, �??Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,�?? CLEO, Baltimore, paper CThG1, May 2005.

www.batop.de

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The two different cavity designs: (a) with fiber output coupler and (b) with variable bulk output coupler. PM - polarization maintaining, HR - high reflection mirror, SAM -saturable absorber mirror, PBS - polarization beam splitter

Fig. 2.
Fig. 2.

Solid curve: Typical output spectrum on a linear scale of the laser operated in the self-similar regime (net cavity dispersion ~ 0.03 ps2). Dotted curve: numerical simulation. Insert: log. scale

Fig. 3.
Fig. 3.

Autocorrelation trace of the externally compressed pulse at a pulse energy of 1 nJ with an autocorrelation FWHM of 280 fs. Inset: Uncompressed output pulse with an autocorrelation FWHM of 8.2 ps.

Metrics