Abstract

We discuss optimization of the optical properties of hollow-core antiresonant reflecting optical waveguides (ARROWs). We demonstrate significant reduction of waveguide loss to 2.6/cm for a 10.4μm2 mode area after adding an initial etching step of the substrate material. The effect of differences in confinement layer thickness is quantified and an optimized design is presented. The polarization dependence of the waveguide loss is measured and the implications for applications are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. Dress and H. Franke, �??A cylindrical liquid-core waveguide,�?? Appl. Phys. B 63 12 (1996).
    [CrossRef]
  2. M. Grewe, A. Grosse, and H. Fouckhardt, �??Theoretical and experimental investigations of the optical waveguiding properties of on-chip microfabricated capillaries,�?? Appl. Phys. B 70, 839 (2000).
    [CrossRef]
  3. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, �??A dielectric omnidirectional reflector,�?? Science 282, 1679 (1998).
    [CrossRef] [PubMed]
  4. P. Russell, �??Holey fiber concept spawns optical-fiber renaissance,�?? Laser Focus World 38, 77 (2002).
  5. G. R. Hadley, J. Fleming, and S. Lin, �??Bragg fiber design for linear polarization,�?? Opt. Lett. 29, 809 (2004).
    [CrossRef] [PubMed]
  6. S. Ghosh, J. E. Sharping, D. G. Ouzonov, and A. L. Gaeta, �??Coherent resonant interactions and slow light with molecules confined in photonic band-gap fibers,�?? Phys. Rev. Lett. 94, 093902 (2005)).
    [CrossRef] [PubMed]
  7. M. A. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, �??Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,�?? Appl. Phys. Lett. 49, 13, (1986).
    [CrossRef]
  8. H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, "Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids," IEEE J. of Selected Topics in Quantum Electronics 11, 519 (2005).
    [CrossRef]
  9. D. Yin, J. P. Barber, A. R. Hawkins, D. W. Deamer, and H. Schmidt, "Integrated optical waveguides with liquid cores," Appl. Phys. Lett. 85, 3477 (2004).
    [CrossRef]
  10. D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, "Integrated ARROW waveguides with hollow cores," Opt. Express 12, 2710 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2710">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2710</a>
    [CrossRef] [PubMed]
  11. J. P. Barber, D. B. Conkey, J. Lee, N. B. Hubbard, L. Howell, H. Schmidt, and A. R. Hawkins, "Fabrication of hollow waveguides with sacrificial aluminum cores," IEEE Photon. Technol. Lett. 17, 363, (2005).
    [CrossRef]
  12. Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, �??On-chip Si-based Bragg cladding waveguide with high index contrast bilayers,�?? Opt. Express 12, 4775 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4775">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4775</a>
    [CrossRef] [PubMed]
  13. P. Yeh, �??Optical waves in layered media,�?? (Wiley Interscience, 1988).
  14. H. Schmidt, and A. R. Hawkins, "Electromagnetically induced transparency in alkali atoms integrated on a semiconductor chip," Appl. Phys. Lett. 86, 032106, (2005).
    [CrossRef]

Appl. Phys. B (2)

P. Dress and H. Franke, �??A cylindrical liquid-core waveguide,�?? Appl. Phys. B 63 12 (1996).
[CrossRef]

M. Grewe, A. Grosse, and H. Fouckhardt, �??Theoretical and experimental investigations of the optical waveguiding properties of on-chip microfabricated capillaries,�?? Appl. Phys. B 70, 839 (2000).
[CrossRef]

Appl. Phys. Lett. (3)

M. A. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, �??Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,�?? Appl. Phys. Lett. 49, 13, (1986).
[CrossRef]

D. Yin, J. P. Barber, A. R. Hawkins, D. W. Deamer, and H. Schmidt, "Integrated optical waveguides with liquid cores," Appl. Phys. Lett. 85, 3477 (2004).
[CrossRef]

H. Schmidt, and A. R. Hawkins, "Electromagnetically induced transparency in alkali atoms integrated on a semiconductor chip," Appl. Phys. Lett. 86, 032106, (2005).
[CrossRef]

IEEE J. Select. Topics in Quantum Elec. (1)

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, "Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids," IEEE J. of Selected Topics in Quantum Electronics 11, 519 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. P. Barber, D. B. Conkey, J. Lee, N. B. Hubbard, L. Howell, H. Schmidt, and A. R. Hawkins, "Fabrication of hollow waveguides with sacrificial aluminum cores," IEEE Photon. Technol. Lett. 17, 363, (2005).
[CrossRef]

Laser Focus World (1)

P. Russell, �??Holey fiber concept spawns optical-fiber renaissance,�?? Laser Focus World 38, 77 (2002).

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

S. Ghosh, J. E. Sharping, D. G. Ouzonov, and A. L. Gaeta, �??Coherent resonant interactions and slow light with molecules confined in photonic band-gap fibers,�?? Phys. Rev. Lett. 94, 093902 (2005)).
[CrossRef] [PubMed]

Science (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, �??A dielectric omnidirectional reflector,�?? Science 282, 1679 (1998).
[CrossRef] [PubMed]

Other (1)

P. Yeh, �??Optical waves in layered media,�?? (Wiley Interscience, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Hollow-core ARROW waveguide cross section. (b) Loss optimization as function of core width. Dashed line: laterally terminating layer is SiO2; solid line: laterally terminating layer is air (core height: 5.8μm).

Fig. 2.
Fig. 2.

SEM images of hollow-core ARROW waveguides. a) no substrate etch; b) pre-etched Si substrate (core height dC=5.8μm).

Fig. 3.
Fig. 3.

(a) Transmitted power versus pre-etched waveguide length (symbols: experiment, lines: exponential fits). (b) Hollow-core waveguide loss versus core width; circles: experiment, squares: simulation, dashed line: non-pre-etched sample (theory), solid line: further optimization via thickness optimization (theory).

Fig. 4.
Fig. 4.

Calculated waveguide loss versus deviation of ARROW layer thickness ratio r from design value for various core widths.

Fig. 5.
Fig. 5.

Transmitted intensity and mode images versus (linear) input polarization angle for pre-etched hollow-core waveguides (w=15μm). Symbols: experiment; line: calculated fit to Eq. (2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d i = λ 4 n i ( 2 N + 1 ) [ 1 n c 2 n i 2 + λ 2 4 n i 2 d c 2 ] 0.5
I o = I i e α X L cos 2 ( θ ) + I i e α Y L sin 2 ( θ )

Metrics