Abstract

Optical near-field interactions exhibit different behavior at different scales, which we term scale-dependent physical hierarchy. Using the intrinsic logical hierarchy of information and a simple digital coding scheme, scale-dependent optical memory accesses are associated with different levels of the information hierarchy. The basic principle is demonstrated by finite-different time-domain simulations and experiments using metal nanoparticles.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, �??Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,�?? IEEE J. Sel. Top. Quantum Electron. 8, 839-862 (2002).
    [CrossRef]
  2. M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, and M. Ohtsu, �??Nanophotonic computing based on optical near-field interactions between quantum dots,�?? IEICE Trans. Electron. E88-C, 1817-1823 (2005).
    [CrossRef]
  3. T. Inoue and H. Hori, �??Representations and transforms of vector field as the basis of near-field optics,�?? Opt. Rev. 3, 458-462 (1996).
    [CrossRef]
  4. K. Kobayashi and M. Ohtsu, �??Quantum theoretical approach to a near-field optical system,�?? J. Microsc. 194, 249�??254 (1999).
    [CrossRef]
  5. M. Ohtsu and H. Hori, Near-Field Nano-Optics (Kluwer Academic/Plenum Publishers, New York 1999).
    [CrossRef]
  6. K. Baba, R. Yamada, S. Nakao, and M. Miyagi, �??Multifrequency three-dimensional optical read-only memory disks using metallic island films: preliminary experiments,�?? Appl. Opt. 32, 3137-3143 (1993).
    [CrossRef] [PubMed]
  7. H. Ditlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, �??Spectrally coded optical data storage by metal nanoparticles,�?? Opt. Lett. 25, 563-565 (2000).
    [CrossRef]
  8. M. Ohtsu and K. Kobayashi, Optical Near Fields (Springer, Belin, 2004).
  9. H. Tamaru, H. Kuwata, and K. Miyano, �??Resonant light scattering from individual Ag nanoparticles and particle pairs,�?? Appl. Phys. Lett. 80, 1826-1828 (2002).
    [CrossRef]
  10. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, �??Optical properties of two interacting gold nanoparticles,�?? Opt. Commun. 220, 137-141 (2003).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Tamaru, H. Kuwata, and K. Miyano, �??Resonant light scattering from individual Ag nanoparticles and particle pairs,�?? Appl. Phys. Lett. 80, 1826-1828 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, �??Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,�?? IEEE J. Sel. Top. Quantum Electron. 8, 839-862 (2002).
[CrossRef]

IEICE Trans. Electron. (1)

M. Naruse, T. Miyazaki, T. Kawazoe, K. Kobayashi, S. Sangu, F. Kubota, and M. Ohtsu, �??Nanophotonic computing based on optical near-field interactions between quantum dots,�?? IEICE Trans. Electron. E88-C, 1817-1823 (2005).
[CrossRef]

J. Microsc. (1)

K. Kobayashi and M. Ohtsu, �??Quantum theoretical approach to a near-field optical system,�?? J. Microsc. 194, 249�??254 (1999).
[CrossRef]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, �??Optical properties of two interacting gold nanoparticles,�?? Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (1)

T. Inoue and H. Hori, �??Representations and transforms of vector field as the basis of near-field optics,�?? Opt. Rev. 3, 458-462 (1996).
[CrossRef]

Other (2)

M. Ohtsu and H. Hori, Near-Field Nano-Optics (Kluwer Academic/Plenum Publishers, New York 1999).
[CrossRef]

M. Ohtsu and K. Kobayashi, Optical Near Fields (Springer, Belin, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

A simple spatial hierarchy observed in optical near-fields. (a) Dipole-dipole interaction. (b) Signal contrast as a function of the ratio of the radius of the sample and the probe. (c) Spatial resolution varies depending on the scale of the sample and the probe. (d) Array of dipole moments distributed on sub-wavelength scale and its observation in near-mode and far-mode.

Fig. 2.
Fig. 2.

Example of logical model for the near-code and far-code. (a) Original 8-bit information is coded differently in the near-code depending on its corresponding far-code, which is either ZERO or ONE. (b) Example of the near-codes and far-codes. (c) Using such encoding and decoding principles, nanoparticle arrangements associated with different levels of the information hierarchy.

Fig. 3.
Fig. 3.

(a) Each section consists of small particles. (b, square marks) Scattering cross-sections are calculated depending on the number of particles in each section. (b, circular marks) Peak-intensity of each section in intensity profile shown in (e). (c) Experimental setup. (d) SEM picture of an Au particle array. (e) Intensity pattern captured for the far-code.

Fig. 4.
Fig. 4.

Scattering cross-section as a function of number of elements forming donut.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I = p P + Δ p P + p S + Δ p S 2
( α P + α S ) 2 E 0 2 + 4 Δ α ( α P + α S ) E 0 2
E ( r ) = θ E θ e iωt + ik r s θ 1 r s θ
E θ = { 0 near-code ( θ ) = 0 E 0 near-code ( θ ) = 1 .
E ( r ) = E 0 e iωt + ikr r θ near-code ( θ )
far code = { 1 If the number of ONEs > N 2 0 otherwise .

Metrics