Abstract

We present a theoretical study on the Z-scan characteristics of thin nonlinear optical media with simultaneous two- and three-photon absorption, a situation that exists, for example, in polydiacetylenes. With the introduction of a coupling function between two- and three-photon absorption, we find a quasi-analytic expression for open aperture Z-scan traces. We make a comparison of the analytic solutions with numerical solutions in detail, showing that they are in good agreement. This theoretical result allows us to easily identify and determine simultaneously the two-and three-photon absorption coefficients from the open aperture Z-scan traces.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. L. Sutherland, Handbook of Nonlinear Optics, (Marcel Dekker, New York, 1996).
  2. G. S. Maciel, N. Rakov, Cid B. de Araujo, A. A. Lipovskii, and D. K. Tagantsev, �??Optical limiting behavior of a glass-ceramic containing sodium niobate crystallites,�?? Appl. Phys. Lett. 79, 584-586 (2001).
    [CrossRef]
  3. G. S. He, P. P. Markowicz, T. C. Lin, and P. N. Prasad, �??Observation of stimulated emission by direct three-photon excitation,�?? Nature 415, 767-770 (2002).
    [CrossRef] [PubMed]
  4. F. Yoshino, S. Polyakov, M. Liu, and G. Stegeman, �??Observation of three-photon enhanced four-photon absorption,�?? Phys. Rev. Lett. 91, 063902 (2003).
    [CrossRef] [PubMed]
  5. S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, �??Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200 nm,�?? Phys. Rev. B. 69, 115421 (2004).
    [CrossRef]
  6. K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, �??Nonlinear optical properties of chalcogenide glasses: observation of multiphoton absorption,�?? Appl. Phys. Lett. 79, 1939-1941 (2001).
    [CrossRef]
  7. R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, �??Two- and three-photon absorption in CS2,�?? Opt. Commun. 231, 431-436(2004).
    [CrossRef]
  8. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, �??Sensitive measurement of optical nonlinearities using a single beam,�?? IEEE J. Quantum Electron. 26, 760-769 (1990).
    [CrossRef]
  9. Mathematica 4.0, (Wolfram Research, Inc., 1999).
  10. G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez, �??Experimental observation of higher order nonlinear absorption in tellurium based chalcogenide glasses,�?? Opt. Commun. 232, 417-423 (2004).
    [CrossRef]
  11. S. Cherukulappurath, J. L. Godet and G. Boudebs, �??Higher order coefficient measurements in nonlinear absorption process,�?? J. Nonlin. Opt. Phys. & Mater. 14, 49-60 (2005).
    [CrossRef]

Appl. Phys. Lett.

G. S. Maciel, N. Rakov, Cid B. de Araujo, A. A. Lipovskii, and D. K. Tagantsev, �??Optical limiting behavior of a glass-ceramic containing sodium niobate crystallites,�?? Appl. Phys. Lett. 79, 584-586 (2001).
[CrossRef]

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, �??Nonlinear optical properties of chalcogenide glasses: observation of multiphoton absorption,�?? Appl. Phys. Lett. 79, 1939-1941 (2001).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, �??Sensitive measurement of optical nonlinearities using a single beam,�?? IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

J. Nonlin. Opt. Phys. & Mater.

S. Cherukulappurath, J. L. Godet and G. Boudebs, �??Higher order coefficient measurements in nonlinear absorption process,�?? J. Nonlin. Opt. Phys. & Mater. 14, 49-60 (2005).
[CrossRef]

Nature

G. S. He, P. P. Markowicz, T. C. Lin, and P. N. Prasad, �??Observation of stimulated emission by direct three-photon excitation,�?? Nature 415, 767-770 (2002).
[CrossRef] [PubMed]

Opt. Commun.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, �??Two- and three-photon absorption in CS2,�?? Opt. Commun. 231, 431-436(2004).
[CrossRef]

G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez, �??Experimental observation of higher order nonlinear absorption in tellurium based chalcogenide glasses,�?? Opt. Commun. 232, 417-423 (2004).
[CrossRef]

Phys. Rev. B

S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, �??Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200 nm,�?? Phys. Rev. B. 69, 115421 (2004).
[CrossRef]

Phys. Rev. Lett.

F. Yoshino, S. Polyakov, M. Liu, and G. Stegeman, �??Observation of three-photon enhanced four-photon absorption,�?? Phys. Rev. Lett. 91, 063902 (2003).
[CrossRef] [PubMed]

Other

R. L. Sutherland, Handbook of Nonlinear Optics, (Marcel Dekker, New York, 1996).

Mathematica 4.0, (Wolfram Research, Inc., 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Analytical Z-scan traces (solid lines) compared with the numerical simulations (discrete symbols) for different intensities at I 0= 15 GW/cm2 (squares), 20 GW/cm2 (circles) and 25 GW/cm2 (triangles), respectively.

Fig. 2.
Fig. 2.

The normalized transmittance at the valley TV as a function of the linear absorption coefficient α 0 obtained by numerical simulation (circles) and our analytic solution (solid lines), respectively. The parameters are inside the figures.

Fig. 3.
Fig. 3.

The normalized transmittance at the valley TV as a function of the 2PA coefficient β1 obtained by numerical simulation (circles) and our analytic solution (solid lines), respectively. The parameters are inside the figures.

Fig. 4.
Fig. 4.

The normalized transmittance at the valley TV as a function of 3PA coefficient β2 obtained by numerical simulation (circles) and our analytic solution (solid lines), respectively. The parameters are inside the figures.

Fig. 5.
Fig. 5.

The normalized transmittance at the valley TV as a function of the on-axis peak intensity I 0 obtained by numerical simulation (circles) and our analytic solution (solid lines), respectively. The parameters are inside the figures.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I ( r , x ) = I 0 1 1 + x 2 exp [ 2 r 2 ω 2 ( x ) ] ,
dI / dz′ = ( α 0 + β n I n ) I .
I ( L , x ) = I ( r , x ) exp ( α 0 L ) / ( 1 + n β n I n ( r , x ) L eff ( n ) ) 1 / n .
T n + 1 ( x , Ψ n ) = 0 2 π I ( L , x ) rdr exp ( α 0 L ) 0 2 π I ( r , x ) rdr = 2 F 1 [ 1 n , 1 n , 1 + n n , ψ n n ]
T 2 ( x , Ψ 1 ) = ln ( 1 + ψ 1 ) / ψ 1 .
T 3 ( x , Ψ 2 ) = sin h 1 ( ψ 2 ) / ψ 2 .
dI / dz′ = ( α 0 + β 1 I + β 2 I 2 ) I .
T ( x , Ψ 1 , Ψ 2 ) = T 2 ( x , Ψ 1 ) T 3 ( x , Ψ 2 ) f ( x , Ψ 1 , Ψ 2 ) ,
f ( x , Ψ 1 , Ψ 2 ) = 1 + ψ 1 [ 0.339 sin ( 0.498 ψ 2 ) 0.029 ] 1 + 0.966 ψ 1 ψ 2 0.718 .

Metrics