Abstract

A new technique to control the chromatic dispersion of a uniform fiber Bragg grating based on the symmetrical bending is proposed and experimentally demonstrated. The specially designed two translation stages with gears and a sawtooth wheel can simultaneously induce the tension and compression strain corresponding to the bending direction. The tension and compression strain can effectively control the chirp ratio along the fiber grating attached on a flexible cantilever beam and consequently the dispersion value without the center wavelength shift. We successfully achieve the wide tuning range of chromatic dispersion without the center wavelength shift, which is less than 0.02 nm. We also reduce the group delay ripple as low as ~±5 ps. And we also demonstrate the application of the proposed tunable dispersion compensation technique to the tunable pulse repetition-rate multiplication and obtain high-quality pulses at repetition rates of 20 ~ 40 GHz.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. J. Eggleton, J. A. Rogers, P. S. Westbrook, and T. A. Strasser, �??Electrically tunable power efficient dispersion compensating fiber Bragg grating,�?? IEEE Photonics Technol. Lett., 11, 854 �?? 856 (1999).
    [CrossRef]
  2. N. Q. Ngo, S. Y. Li, R. T. Zheng, S. C. Tjin, and P. Shum, �??Electrically tunable dispersion compensator with fixed center wavelength using fiber Bragg grating,�?? J. Lightwave Technol., 21, 1568 �?? 1575 (2003).
    [CrossRef]
  3. L. Dong, J. L. Cruz, L. Reekie, and J. A. Tucknott, �??Fabrication of chirped fiber gratings using etched tapers,�?? Electron. Lett., 31, 908 �?? 909 (2001).
    [CrossRef]
  4. J. Mora, A. Diez, M. V. Andres, P. Y. Fonjallaz, and M. Popov, �??Tunable dispersion compensator based on a fiber Bragg grating written in a tapered fiber,�?? IEEE Photonics Technol. Lett., 16, 2631 �?? 2633 (2004).
    [CrossRef]
  5. M. M. Ohn, A. T. Alavie, R. Maaskant, M. G. Xu, F. Bilodeau, and K. O. Hill, �??Dispersion variable fiber Bragg grating using a piezoelectric stack,�?? Electron. Lett., 32, 2000 �?? 2001 (1996).
    [CrossRef]
  6. P. C. Hill and B. J. Eggleton, �??Strain gradient chirp of fiber Bragg gratings,�?? Electron. Lett., 30, 1172 �?? 1174 (1994).
    [CrossRef]
  7. S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, F. Kubota, �??Tunable dispersion slope compensator with a chirped fiber grating and a divided thin-film heater for 160-Gb/s RZ transmissions,�?? IEEE Photonics Technol. Lett., 16, 1095 �?? 1097 (2005).
    [CrossRef]
  8. T. Imai, T. Komukai, and M. Nakazawa, �??Dispersion tuning of a linearly chirped fiber Bragg grating without a center wavelength shift by applying a strain gradient,�?? IEEE Photonics Technol. Lett., 10, 845 �?? 847 (1998).
    [CrossRef]
  9. C. S. Goh, S. Y. Set, and K. Kikuchi, �??Design and Fabrication of a Tunable Dispersion-Slope Compensating Module Based on Strain-Chirped Fiber Bragg Gratings,�?? IEEE Photonics Technol. Lett., 16, 524 �?? 526 (2004).
    [CrossRef]
  10. T. Komukai, T. Inui, and M. Nakazawa, �??Very low group delay ripple characteristics of fiber Bragg gratings with chirp induced by an S-curve bending technique,�?? Electron. Lett., 37, 449 �?? 451 (2001).
    [CrossRef]
  11. H. Liu, S. C. Tjin, N. Q. Ngo, K. B. Tan, K. M. Chan, J. H. Ng, C. Lu, �?? A novel method for creating linearly and nonlinearly chirped fiber Bragg gratings,�?? Opt. Commun., 217, 179 �?? 183 (2003).
    [CrossRef]
  12. J. Kim, J. Bae, Y. G. Han, J. M. Jeong, S. H. Kim, and S. B. Lee, �??Effectively Tunable Dispersion Compensation Based on Chirped Fiber Bragg Gratings without Central Wavelength Shift,�?? IEEE Photonics Technol. Lett., 16, 849 �?? 851 (2004).
    [CrossRef]
  13. S. Chung, J. Kwon, S. Baek, and B. Kim, �??Group delay control of super imposed fiber gratings using a two column system mounted on a rotatable disk,�?? IEEE Photonics Technol. Lett., 16, 153 �?? 155 (2005).
    [CrossRef]
  14. C. J. S. de Matos, and J. R. Taylor, �??Tunable repetition-rate multiplication of a 10 GHz pulse train using linear and nonlinear fiber propagation,�?? Appl. Phys. Lett., 26, 5356 �?? 5358 (2003).
    [CrossRef]
  15. S. Longhi, M. Marano, P. Laporta, O. Svelto, M. BElmonte, A. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen, �?? 40-GHz pulse train generation at 1.5µm with a chirped fiber grating as a frequency multiplier,�?? Opt. Lett., 25, 1481 �?? 1483 (2000).
    [CrossRef]
  16. J. H. Lee, Y. M. Chang, Y. G. Han, H. Chung, S. H. Kim, and S. B. Lee, �??2~5 times tunable repetition-rate multiplication of a 10 GHz pulse source using a linearly tunable, chirped fiber Bragg grating,�?? Opt. Express, 12, 3900 �?? 3905 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3900">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3900</a>
    [CrossRef] [PubMed]
  17. J. A. Bolger, P. Hu, J. T. Mok, J. L. Blows, and B. J. Eggleton, �?? Talbot self-imaging and cross-phase modulation for generation of tunable high repetition rate pulse trains,�?? Opt. Commun., 249, 431 �?? 439 (2005).
    [CrossRef]
  18. J.T. Mok and B.J. Eggleton, �??Impact of group delay ripple on repetition-rate multiplication through Talbot self-imaging effect,�?? Opt. Commun., 232, 167 �?? 178 (2004).
    [CrossRef]

Appl. Phys. Lett.

C. J. S. de Matos, and J. R. Taylor, �??Tunable repetition-rate multiplication of a 10 GHz pulse train using linear and nonlinear fiber propagation,�?? Appl. Phys. Lett., 26, 5356 �?? 5358 (2003).
[CrossRef]

Electron. Lett.

M. M. Ohn, A. T. Alavie, R. Maaskant, M. G. Xu, F. Bilodeau, and K. O. Hill, �??Dispersion variable fiber Bragg grating using a piezoelectric stack,�?? Electron. Lett., 32, 2000 �?? 2001 (1996).
[CrossRef]

P. C. Hill and B. J. Eggleton, �??Strain gradient chirp of fiber Bragg gratings,�?? Electron. Lett., 30, 1172 �?? 1174 (1994).
[CrossRef]

L. Dong, J. L. Cruz, L. Reekie, and J. A. Tucknott, �??Fabrication of chirped fiber gratings using etched tapers,�?? Electron. Lett., 31, 908 �?? 909 (2001).
[CrossRef]

T. Komukai, T. Inui, and M. Nakazawa, �??Very low group delay ripple characteristics of fiber Bragg gratings with chirp induced by an S-curve bending technique,�?? Electron. Lett., 37, 449 �?? 451 (2001).
[CrossRef]

IEEE Photonics Technol. Lett.

J. Mora, A. Diez, M. V. Andres, P. Y. Fonjallaz, and M. Popov, �??Tunable dispersion compensator based on a fiber Bragg grating written in a tapered fiber,�?? IEEE Photonics Technol. Lett., 16, 2631 �?? 2633 (2004).
[CrossRef]

S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, F. Kubota, �??Tunable dispersion slope compensator with a chirped fiber grating and a divided thin-film heater for 160-Gb/s RZ transmissions,�?? IEEE Photonics Technol. Lett., 16, 1095 �?? 1097 (2005).
[CrossRef]

T. Imai, T. Komukai, and M. Nakazawa, �??Dispersion tuning of a linearly chirped fiber Bragg grating without a center wavelength shift by applying a strain gradient,�?? IEEE Photonics Technol. Lett., 10, 845 �?? 847 (1998).
[CrossRef]

C. S. Goh, S. Y. Set, and K. Kikuchi, �??Design and Fabrication of a Tunable Dispersion-Slope Compensating Module Based on Strain-Chirped Fiber Bragg Gratings,�?? IEEE Photonics Technol. Lett., 16, 524 �?? 526 (2004).
[CrossRef]

B. J. Eggleton, J. A. Rogers, P. S. Westbrook, and T. A. Strasser, �??Electrically tunable power efficient dispersion compensating fiber Bragg grating,�?? IEEE Photonics Technol. Lett., 11, 854 �?? 856 (1999).
[CrossRef]

J. Kim, J. Bae, Y. G. Han, J. M. Jeong, S. H. Kim, and S. B. Lee, �??Effectively Tunable Dispersion Compensation Based on Chirped Fiber Bragg Gratings without Central Wavelength Shift,�?? IEEE Photonics Technol. Lett., 16, 849 �?? 851 (2004).
[CrossRef]

S. Chung, J. Kwon, S. Baek, and B. Kim, �??Group delay control of super imposed fiber gratings using a two column system mounted on a rotatable disk,�?? IEEE Photonics Technol. Lett., 16, 153 �?? 155 (2005).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

J. A. Bolger, P. Hu, J. T. Mok, J. L. Blows, and B. J. Eggleton, �?? Talbot self-imaging and cross-phase modulation for generation of tunable high repetition rate pulse trains,�?? Opt. Commun., 249, 431 �?? 439 (2005).
[CrossRef]

J.T. Mok and B.J. Eggleton, �??Impact of group delay ripple on repetition-rate multiplication through Talbot self-imaging effect,�?? Opt. Commun., 232, 167 �?? 178 (2004).
[CrossRef]

H. Liu, S. C. Tjin, N. Q. Ngo, K. B. Tan, K. M. Chan, J. H. Ng, C. Lu, �?? A novel method for creating linearly and nonlinearly chirped fiber Bragg gratings,�?? Opt. Commun., 217, 179 �?? 183 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic of the proposed chromatic dispersion controller with the uniform FBG. (b) Symmetrical bending scheme based on two moving stage. Tension and compression strain depending on the bending direction can be induced.

Fig. 2.
Fig. 2.

Measured reflection spectra with the variation of translation stage. Two translation stages were oppositely moved by the micrometer and a sawtooth wheel. The bandwidth of the uniform FBG was changed in the range from 0.5 nm to 7.5 nm corresponding to the moving distance range of translation stage (0 mm < y < 18 mm).

Fig. 3.
Fig. 3.

Measured group delay with the variation of translation stage.

Fig. 4.
Fig. 4.

Measured group velocity dispersion with the variation of translation stage and theoretical fitting curve.

Fig. 5.
Fig. 5.

Measured group delay ripple with the variation of translation stage.

Fig. 6.
Fig. 6.

Measured autocorrelation traces of the multiplied output pulse train at various repetition-rates of 20 ~ 50 GHz together with that of the original 10 GHz input pulses from the mode-locked laser.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D ( ε ) = Δ τ Δ λ = Δ τ 2 λ p ε ,
ε ( x , y ) = 6 yd L 3 ( L 2 x ) ,

Metrics