Abstract

Integral imaging systems are imaging devices that provide 3D images of 3D objects. When integral imaging systems work in their standard configuration the provided reconstructed images are pseudoscopic; that is, are reversed in depth. In this paper we present, for the first time we believe, a technique for formation of real, undistorted, orthoscopic integral images by direct pickup. The technique is based on a smart mapping of pixels of an elemental-images set. Simulated imaging experiments are presented to support our proposal.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. G. Lippmann, �??Epreuves reversibles donnant la sensation du relief,�?? J. Phys. (Paris) 7, 821-825 (1908).
  2. F. Okano, H. Hoshino, J. Arai, and I. Yayuma, "Real time pickup method for a three-dimensional image based on integral photography," Appl. Opt. 36, 1598-1603 (1997).
    [CrossRef] [PubMed]
  3. H. Arimoto and B. Javidi, "Integral three-dimensional imaging with digital reconstruction," Opt. Lett. 26, 157-159 (2001).
    [CrossRef]
  4. L. Erdman and K. J. Gabriel, "High resolution digital photography by use of a scanning microlens array," Appl. Opt. 40, 5592-5599 (2001).
    [CrossRef]
  5. S. Kishk and B. Javidi, "Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging," Opt. Express 11, 3528-3541 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3528.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3528.</a>
    [CrossRef] [PubMed]
  6. A. Stern and B. Javidi, �??Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging,�?? Appl. Opt. 42, 7036-7042 (2003).
    [CrossRef] [PubMed]
  7. J.-S. Jang and B. Javidi, �??Three-dimensional synthetic aperture integral imaging,�?? Opt. Lett. 27, 1144-1146 (2002).
    [CrossRef]
  8. J.-S. Jang and B. Javidi, "Improved viewing resolution of three-dimensional integral imaging by use of non stationary micro-optics," Opt. Lett. 27, 324-326 (2002).
    [CrossRef]
  9. J.-S. Jang and B. Javidi, "Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes," Opt. Lett. 28, 1924-1926 (2003).
    [CrossRef] [PubMed]
  10. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, �??Integral imaging with improved depth of field by use of amplitude modulated microlens array,�?? Appl. Opt. 43 (31) (2004).
    [CrossRef] [PubMed]
  11. R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral and B. Javidi, �??Enhanced depth of field integral imaging with sensor resolution constraints,�?? Opt. Express 12, 5237-5242 (2004).
    [CrossRef] [PubMed]
  12. M. Hain, W. von Spiegel, M. Schmiedchen, T. Tschudi, and B. Javidi, �??3D integral imaging using diffractive Fresnel lens array,�?? Opt. Express 13, 315-326 (2005).
    [CrossRef] [PubMed]
  13. Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, �??Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,�?? Appl. Opt. 44, 546-552 (2005).
    [CrossRef] [PubMed]
  14. J. Aray, F. Okano, H. Hoshino, and I. Yuyama, �??Gradient-index lens-array method based on real-time integral photography for three-dimensional images,�?? Appl. Opt. 37, 2035-2045 (1998).
  15. H. Choi, S.-W. Min, S. Jung, J.-H. Park, and B.Lee, �??Multiple-viewing-zone integral imaging using dynamic barrier array for three-dimensional displays,�?? Opt. Express 11, 927-932 (2003).
    [CrossRef] [PubMed]
  16. Y. Frauel, O. Matoba, E. Tajahuerce, and B. Javidi, "Comparison of passive ranging integral imaging and active imaging digital holography for 3D object recognition," Appl. Opt. 43, 452-462 (2004).
    [CrossRef] [PubMed]
  17. S. Yeom and B. Yavidi, �??Three-dimensional distortion-tolerant object recognition using integral imaging,�?? Opt. Express 12, 5795-5809 (2005).
    [CrossRef]
  18. O. Matoba and B. Javidi, �??Three-dimensional polarimetric integral imaging,�?? Opt. Lett. 29, 2375-2377 (2004).
    [CrossRef] [PubMed]
  19. S.-W. Min, M. Hahn, J. Kim, and B. Lee, �??Three-dimensional electro-floating display system using an integral imaging method,�?? Opt. Express 13, 4358-4369 (2005).
    [CrossRef] [PubMed]
  20. H. E. Ives, �??Optical properties of a Lippmann lenticulated sheet,�?? J. Opt. Soc. Am. 21, 171-176 (1931).
    [CrossRef]
  21. T. Okoshi, �??Three-dimensional displays,�?? Proc. IEEE, 68, 548-564 (1980).
    [CrossRef]
  22. N. Davies, M. McCormick, and L. Yang, "Three-dimensional imaging systems: a new development," Appl. Opt. 27, 4520-4528 (1988).
    [CrossRef] [PubMed]
  23. J.-H. Park, S.-W. Min, S. Jung, and B. Lee, �??Analysis of viewing parameters for two display methods based on integral photography,�?? Appl. Opt. 40, 5217-5232 (2001).
    [CrossRef]
  24. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, �??Mutifacet structure of observed reconstructed integral images,�?? J. Opt. Soc. Am. A 22, 597-603 (2005).
    [CrossRef]
  25. J-S. Jang and B. Javidi, "Two-step integral imaging for orthoscopic three-dimensional imaging with improved viewing resolution," Opt. Eng. 41, 2568-2571 (2002).
    [CrossRef]
  26. J-S. Jang and B. Javidi, "Three-dimensional projection integral imaging using micro-convex-mirror arrays," Opt. Express 12, 1077-1083 (2004).
    [CrossRef] [PubMed]
  27. J.-S. Jang and B. Javidi, "Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging," Opt. Eng. 42, 1869-1870 (2003).
    [CrossRef]

Appl. Opt. (9)

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, �??Integral imaging with improved depth of field by use of amplitude modulated microlens array,�?? Appl. Opt. 43 (31) (2004).
[CrossRef] [PubMed]

J. Aray, F. Okano, H. Hoshino, and I. Yuyama, �??Gradient-index lens-array method based on real-time integral photography for three-dimensional images,�?? Appl. Opt. 37, 2035-2045 (1998).

N. Davies, M. McCormick, and L. Yang, "Three-dimensional imaging systems: a new development," Appl. Opt. 27, 4520-4528 (1988).
[CrossRef] [PubMed]

F. Okano, H. Hoshino, J. Arai, and I. Yayuma, "Real time pickup method for a three-dimensional image based on integral photography," Appl. Opt. 36, 1598-1603 (1997).
[CrossRef] [PubMed]

J.-H. Park, S.-W. Min, S. Jung, and B. Lee, �??Analysis of viewing parameters for two display methods based on integral photography,�?? Appl. Opt. 40, 5217-5232 (2001).
[CrossRef]

L. Erdman and K. J. Gabriel, "High resolution digital photography by use of a scanning microlens array," Appl. Opt. 40, 5592-5599 (2001).
[CrossRef]

A. Stern and B. Javidi, �??Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging,�?? Appl. Opt. 42, 7036-7042 (2003).
[CrossRef] [PubMed]

Y. Frauel, O. Matoba, E. Tajahuerce, and B. Javidi, "Comparison of passive ranging integral imaging and active imaging digital holography for 3D object recognition," Appl. Opt. 43, 452-462 (2004).
[CrossRef] [PubMed]

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, �??Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,�?? Appl. Opt. 44, 546-552 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. (Paris) (1)

M. G. Lippmann, �??Epreuves reversibles donnant la sensation du relief,�?? J. Phys. (Paris) 7, 821-825 (1908).

Opt. Eng. (2)

J-S. Jang and B. Javidi, "Two-step integral imaging for orthoscopic three-dimensional imaging with improved viewing resolution," Opt. Eng. 41, 2568-2571 (2002).
[CrossRef]

J.-S. Jang and B. Javidi, "Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging," Opt. Eng. 42, 1869-1870 (2003).
[CrossRef]

Opt. Express (7)

Opt. Lett. (5)

Proc. IEEE (1)

T. Okoshi, �??Three-dimensional displays,�?? Proc. IEEE, 68, 548-564 (1980).
[CrossRef]

Supplementary Material (1)

» Media 1: GIF (265 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Scheme of a standard InI system. In the pickup stage a set of 2D elemental images are recorded in the CCD. In the display step a real depth-reversed image is provided to the observer.

Fig. 2.
Fig. 2.

PO conversion method proposed by Ives. The reconstructed image is used as the object for a second pickup. The second display provides the observer with a real, undistorted orthoscopic image.

Fig. 3.
Fig. 3.

The auto-collimating screen produces undistorted, depth-reversed images of 3D objects.

Fig. 4.
Fig. 4.

Schematic drawing of the orthoscopic, virtual reconstruction.

Fig. 5.
Fig. 5.

This technique provides real, orthoscopic but distorted 3D images.

Fig. 6.
Fig. 6.

Scheme of the PO digital conversion method.

Fig. 7.
Fig. 7.

Scheme, not to scale, of the pickup numerical experiment. The CCD is adjusted so that the reference object plane is at 102.5 mm. The letters are separated by 60 mm in depth.

Fig. 8.
Fig. 8.

(a) Collection of 39 × 39 elemental images obtained with the setup of previous figure; (b) Elemental images obtained after applying the smart pixel mapping.

Fig. 9
Fig. 9

(a) Real, pseudoscopic image calculated from the elemental images in Fig. 8 (a); (b) Real orthoscopic image calculated from the elemental images in Fig. 8 (b). In both reconstructions we assume that the observer is placed at 500 mm from the microlenses, and he/she laterally displaces the eye from left to right The eye displacement is from x=-25mm to x=+25 mm. (Video file of 0.27 Mb).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N = m M and M = 2 d g ,
D i , j = O k , where k = i + ( M + 1 2 ) j ; and = ( M + 1 ) j .

Metrics