Abstract

Bandgaps of a structure with electrorheological fluids sandwiched between planar metallic fractal electrodes are investigated in the microwave regime. Our results show that bandgaps are tunable as a result of the electrorheological effect induced by the external electric field applied directly to the structure. A finite-difference time-domain simulation reveals that the tunability of bandgaps is not related to the average dielectric constant but is caused by the field-induced structural change in the electrorheological fluids.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef] [PubMed]
  3. C. M. Soukoulis, Photonic Band Gap Materials (Kluwer, Dordrecht, 1996).
  4. C. M. Soukoulis, Photonic Crystals and Light Localization in the 21st Century (Kluwer, Dordrecht, 2001).
  5. K. Busch and S. John, �??Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,�?? Phys. Rev. Lett. 83, 967 (1999).
    [CrossRef]
  6. Y. Shimoda, M. Ozaki, and K. Yoshino, �??Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,�?? Appl. Phys. Lett. 79, 3627 (2001).
    [CrossRef]
  7. B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, �??Ferroelectric inverse opals with electrically tunable photonic band gap,�?? Appl. Phys. Lett. 83, 4704 (2003).
    [CrossRef]
  8. J. Zhou, C. Q. Sun, K. Pita, Y. L. Lam, Y. Zhou, S. L. Ng, C. H. Kam, L. T. Li, and Z. L. Gui, �??Thermally tuning of the photonic band gap of SiO2 colloid-crystal infilled with ferroelectric BaTiO3,�?? Appl. Phys. Lett. 78, 661 (2001).
    [CrossRef]
  9. M. Golosovsky, Y. Saado, and D. Davidov, �??Self-assembly of floating magnetic particles into ordered structures: A promising route for the fabrication of tunable photonic band gap materials,�?? Appl. Phys. Lett. 75, 4168 (1999).
    [CrossRef]
  10. S. Kim and V. Gopalan, �??Strain-tunable photonic band gap crystals,�?? Appl. Phys. Lett. 78, 3015 (2001).
    [CrossRef]
  11. H. Ma, W. Wen, W. Y. Tam, and P. Sheng, �??Dielectric electrorheological fluids: theory and experiment,�?? Adv. Phys. 52, 343 (2003).
    [CrossRef]
  12. W. Wen, H. Ma, W. Y. Tam, and P. Sheng, �??Anisotropic dielectric properties of structured electrorheological fluids,�?? Appl. Phys. Lett. 73, 3070 (1998).
    [CrossRef]
  13. W. Wen, L. Zhou, J. Li, W. Ge, C. T. Chan, and P. Sheng, �??Subwavelength photonic band gaps from planar fractals,�?? Phys. Rev. Lett. 89, 223901 (2002).
    [CrossRef] [PubMed]
  14. W. Wen, X. Huang, S. Yang, and P. Sheng, �??The giant electrorheological effect in suspensions of nanoparticles,�?? Nature Mater. 2, 727 (2003).
    [CrossRef]
  15. Simulations were performed using the software package CONCERTO 3.1 (Vector Fields Limited, England, 2003).
  16. L. Zhou, C. T. Chan, and P. Sheng, �??Theoretical studies on the transmission and reflection properties of metallic planar fractals,�?? J. Phys. D: Appl. Phys. 37, 368 (2004).
    [CrossRef]
  17. B. A. Munk, Frequency Selective Surfaces, Theory and Design (Wiley, New York, 2000).
    [CrossRef]

Adv. Phys.

H. Ma, W. Wen, W. Y. Tam, and P. Sheng, �??Dielectric electrorheological fluids: theory and experiment,�?? Adv. Phys. 52, 343 (2003).
[CrossRef]

Appl. Phys. Lett.

W. Wen, H. Ma, W. Y. Tam, and P. Sheng, �??Anisotropic dielectric properties of structured electrorheological fluids,�?? Appl. Phys. Lett. 73, 3070 (1998).
[CrossRef]

Y. Shimoda, M. Ozaki, and K. Yoshino, �??Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,�?? Appl. Phys. Lett. 79, 3627 (2001).
[CrossRef]

B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, �??Ferroelectric inverse opals with electrically tunable photonic band gap,�?? Appl. Phys. Lett. 83, 4704 (2003).
[CrossRef]

J. Zhou, C. Q. Sun, K. Pita, Y. L. Lam, Y. Zhou, S. L. Ng, C. H. Kam, L. T. Li, and Z. L. Gui, �??Thermally tuning of the photonic band gap of SiO2 colloid-crystal infilled with ferroelectric BaTiO3,�?? Appl. Phys. Lett. 78, 661 (2001).
[CrossRef]

M. Golosovsky, Y. Saado, and D. Davidov, �??Self-assembly of floating magnetic particles into ordered structures: A promising route for the fabrication of tunable photonic band gap materials,�?? Appl. Phys. Lett. 75, 4168 (1999).
[CrossRef]

S. Kim and V. Gopalan, �??Strain-tunable photonic band gap crystals,�?? Appl. Phys. Lett. 78, 3015 (2001).
[CrossRef]

J. Phys. D: Appl. Phys.

L. Zhou, C. T. Chan, and P. Sheng, �??Theoretical studies on the transmission and reflection properties of metallic planar fractals,�?? J. Phys. D: Appl. Phys. 37, 368 (2004).
[CrossRef]

Nature Mater.

W. Wen, X. Huang, S. Yang, and P. Sheng, �??The giant electrorheological effect in suspensions of nanoparticles,�?? Nature Mater. 2, 727 (2003).
[CrossRef]

Phys. Rev. Lett.

W. Wen, L. Zhou, J. Li, W. Ge, C. T. Chan, and P. Sheng, �??Subwavelength photonic band gaps from planar fractals,�?? Phys. Rev. Lett. 89, 223901 (2002).
[CrossRef] [PubMed]

K. Busch and S. John, �??Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,�?? Phys. Rev. Lett. 83, 967 (1999).
[CrossRef]

E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Other

C. M. Soukoulis, Photonic Band Gap Materials (Kluwer, Dordrecht, 1996).

C. M. Soukoulis, Photonic Crystals and Light Localization in the 21st Century (Kluwer, Dordrecht, 2001).

B. A. Munk, Frequency Selective Surfaces, Theory and Design (Wiley, New York, 2000).
[CrossRef]

Simulations were performed using the software package CONCERTO 3.1 (Vector Fields Limited, England, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic illustrations of the ER-fluid-sandwiched structure without the external E field (left) and with it (right), where the gap between two PCB is exaggerated for a better view.

Fig. 2.
Fig. 2.

Measured and calculated normal transmissions of the ER-fluid-sandwiched structure under (a) parallel and (b) perpendicular polarizations for three cases: without the ER fluid (the black curve), with the ER fluid but no voltage supply (the red curve), and with both the ER fluid and the voltage supply (the blue curve). The microwave was incident with its E field parallel and perpendicular to the first-level line of the H-fractal.

Fig. 3.
Fig. 3.

Intensity distribution of the dynamic E field inside the cell after triggering the ER effect, simulated for the 4.45GHz stop band. The magenta denotes the strongest field and the blue denotes zero. The closed white contour traces out the nanoparticle assembly.

Fig. 4.
Fig. 4.

Maximum rejection positions of the stop band corresponding to the various permittivity values of the oil and the nanoparticle assembly. Squares denote the result of changing the oil’s permittivity while keeping the assembly’s permittivity at 4.3; stars denote the result of changing the latter while keeping the oil’s permittivity at 2.5.

Metrics