Abstract

Channel waveguides at 1540 nm in X- and Z-cut LiNbO3 are formed by one-step multienergy MeV O2+ implantation. Single perpendicular mode in both planar and channel waveguides is demonstrated. In the ne channel waveguide, double transverse modes are observed because of the large index difference and broad width of the channel. A single transverse mode is obtained in the no channel waveguide. The thickness of the waveguide is less than 2 μm, and the compactness of the waveguide is attributed to the large index difference between the guiding region and the low-index barrier. The mode patterns and the waveguide loss are measured and analyzed. The loss of 0.9 and 0.7 dB/cm are obtained from the no and ne channel waveguides, respectively.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. V. Schmidt and I. R. Kaminow, �??Metal-diffused optical waveguide in LiNbO3,�?? Appl. Phys. Lett. 25, 458�??460 (1974).
    [CrossRef]
  2. C. Canali, A. Carnera, G. D. DellaMea, P. Mazzoldi, S. M. Al-Shukri, A. C. G. Nutt, and R. M. DeLaRue, �??Structural characterization of proton exchanged LiNbO3 optical waveguide,�?? J. Appl. Phys. 59, 2643�??2649 (1986).
    [CrossRef]
  3. P. D. Townsend and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, UK, 1994).
    [CrossRef]
  4. H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang and D. Y. Shen, �??Monomode optical waveguide in lithium niobate formed by MeV by Si+ ion implantation,�?? J. Appl. Phys. 89, 5224�??5226 (2000).
    [CrossRef]
  5. D. Fluck, P. Gunter, R. Irmscher and Ch. Buchal, �??Optical strip waveguides in LiNbO3 formed by He ion implantation,�?? Appl. Phys. Lett. 59, 3213�??3215 (1991).
    [CrossRef]
  6. D. Fluck, P. Gunter, R. Irmscher and Ch. Buchal, �??Low loss optical channel waveguides in LiNbO3 by multiple energy ion implantationp,�?? J. Appl. Phys. 72, 1671�??1675 (1992).
    [CrossRef]
  7. B. Vincent, A. Boudroua, J. C. Loulergue, P. Moretti, S. Tascu, B. Jacquier, G.. Aka and D. Vivien, �??Channel waveguides in Ga4GdO(BO3)3 fabricated by He+ implantation for blue light generation,�?? Opt. Lett. 28, 1025�??1027 (2003).
    [CrossRef] [PubMed]
  8. D. Fluck, T. Pliska, P. Gunter, St. Bauer, L. Beckers and Ch. Buchal, �??Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design,�?? Appl. Phys. Lett. 69, 4133�??4135 (1996).
    [CrossRef]
  9. F. Lu, T. T. Zhang, G.. Fu, X. L. Wang, K. M. Wang, H. J. Ma, and D. Y. Shen, �??Investigation and analysis of a single-mode waveguide formed by multienergy-implanted LiNbO3,�?? Opt. Express 13, 2256�??2262 (2005) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2256.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2256.</a>
    [CrossRef] [PubMed]
  10. H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, D. Y. Shen, �??Extraordinary refractive �??index increase in lithiumniobate caused by low dose implantation,�?? Appl. Opt. 8, 3759�??3761 (2001).
    [CrossRef]

Appl. Opt.

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, D. Y. Shen, �??Extraordinary refractive �??index increase in lithiumniobate caused by low dose implantation,�?? Appl. Opt. 8, 3759�??3761 (2001).
[CrossRef]

Appl. Phys. Lett.

D. Fluck, T. Pliska, P. Gunter, St. Bauer, L. Beckers and Ch. Buchal, �??Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design,�?? Appl. Phys. Lett. 69, 4133�??4135 (1996).
[CrossRef]

R. V. Schmidt and I. R. Kaminow, �??Metal-diffused optical waveguide in LiNbO3,�?? Appl. Phys. Lett. 25, 458�??460 (1974).
[CrossRef]

D. Fluck, P. Gunter, R. Irmscher and Ch. Buchal, �??Optical strip waveguides in LiNbO3 formed by He ion implantation,�?? Appl. Phys. Lett. 59, 3213�??3215 (1991).
[CrossRef]

J. Appl. Phys.

D. Fluck, P. Gunter, R. Irmscher and Ch. Buchal, �??Low loss optical channel waveguides in LiNbO3 by multiple energy ion implantationp,�?? J. Appl. Phys. 72, 1671�??1675 (1992).
[CrossRef]

C. Canali, A. Carnera, G. D. DellaMea, P. Mazzoldi, S. M. Al-Shukri, A. C. G. Nutt, and R. M. DeLaRue, �??Structural characterization of proton exchanged LiNbO3 optical waveguide,�?? J. Appl. Phys. 59, 2643�??2649 (1986).
[CrossRef]

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang and D. Y. Shen, �??Monomode optical waveguide in lithium niobate formed by MeV by Si+ ion implantation,�?? J. Appl. Phys. 89, 5224�??5226 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Other

P. D. Townsend and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, UK, 1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Simulated damage profile in LiNbO3 caused by O2+ implantation according to TRIM code.

Fig. 2.
Fig. 2.

(a) Schematic illustration of the implanted-channel waveguide formation. (b) Microscopic cross section of the channel waveguide formed by O2+ implantation.

Fig. 3.
Fig. 3.

Mode profile of single-mode planar waveguide at 1540 nm by prism-coupling measurement.

Fig. 4.
Fig. 4.

(a) The typical intensity pattern of double transverse modes from the ne channel waveguide output; (b) the typical intensity pattern of a single transverse mode from the no channel waveguide output.

Metrics