Abstract

The light transmission through a single subwavelength aperture surrounded by periodic grooves in layered films consisting of Ag and transparent dielectric is analyzed numerically by finite difference time domain (FDTD) method. Results show that the transmission through the aperture in the composite films is strongly enhanced by the modulation of grooves on the transparent dielectric. Two models are employed to explain the mechanisms of transmission enhancement.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. A. Bethe, �??Theory of diffraction by small holes,�?? Phys. Rev. 66, 163-182 (1944).
    [CrossRef]
  2. H. J. Lezec, A. Degiron, B. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, �??Beaming Light from a Subwavelength Aperture,�?? Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  3. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, �??Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate,�?? Appl. Phys. Lett. 81, 4661-4663 (2002).
    [CrossRef]
  4. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, �??Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,�?? Phys. Rev. Lett. 90, 167401 (2003).
    [CrossRef] [PubMed]
  5. F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, �??Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,�?? Phys. Rev. Lett. 90, 213901 (2003).
    [CrossRef] [PubMed]
  6. F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, �??Focusing light with a single subwavelength aperture flanked by surface corrugations,�?? Appl. Phys. Lett. 83, 4500-4502 (2003).
    [CrossRef]
  7. F. I. Baida, D. Van Labeke, and B. Guizal, �??Enhanced confined light transmission by single subwavelength apertures in metallic films,�?? Appl. Opt. 42, 6811-6815 (2003).
    [CrossRef] [PubMed]
  8. J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, �??Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,�?? Photon. Nanostruct. 1, 55-62 (2003).
    [CrossRef]
  9. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, �??Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,�?? Appl. Phys. Lett. 84, 2040-2042 (2004).
    [CrossRef]
  10. S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, �??Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,�?? Appl. Phys. Lett. 85, 1098-1100 (2004).
    [CrossRef]
  11. H. J. Lezec and T. Thio, �??Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,�?? Opt. Express 12, 3629-3651 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3629">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3629</a>.
    [CrossRef] [PubMed]
  12. A. Degiron and T. W. Ebbesen, �??Analysis of the transmission process through single apertures surrounded by periodic corrugations,�?? Opt. Express 12, 3694-3700 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3694">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3694</a>.
    [CrossRef] [PubMed]
  13. D. A. Thomas and H. P. Hughes, �??Enhanced optical transmission through a subwavelength 1D aperture,�?? Solid State Commun. 129, 519-524 (2004).
    [CrossRef]
  14. H. Caglayan, I. Bulu, and E. Ozbay, �??Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture,�?? Opt. Express 13, 1666-1671 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1666">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1666</a>.
    [CrossRef] [PubMed]
  15. L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, �??Physical origin of directional beaming emitted from a subwavelength slit,�?? Phys. Rev. B 71, 041405 (2005).
    [CrossRef]
  16. H. Cao, A. Agrawal, and A. Nahata, �??Controlling the transmission resonance lineshape of a single subwavelength aperture,�?? Opt. Express 13, 763-769 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-763">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-763</a>.
    [CrossRef] [PubMed]
  17. A. Agrawal, H. Cao, and A. Nahata, �??Time-domain analysis of enhanced transmission through a single subwavelength aperture,�?? Opt. Express 13, 3535-3542 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3535">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3535</a>.
    [CrossRef] [PubMed]
  18. M. Beruete, M. Sorolla, I. Campillo, and J. S. Dolado, �??Subwavelength Slotted Corrugated Plate with Enhanced Quasioptical Millimeter Wave Transmission,�?? IEEE Microw. Wirel. Co. 15, 286-288 (2005).
    [CrossRef]
  19. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, �??Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,�?? J. Opt. A 7, S152-S158 (2005).
    [CrossRef]
  20. S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, �??Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,�?? J. Opt. A 7, S159-S164 (2005).
    [CrossRef]
  21. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, �??Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width,�?? Phys. Rev. Lett. 92, 113903 (2004).
    [CrossRef] [PubMed]
  22. E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, �??Enhanced transmission and beaming of light via photonic crystal surface modes,�?? Phys. Rev. B 69, 121402(R) (2004).
    [CrossRef]
  23. S. K. Morrison and Y. S. Kivshar, �??Engineering of directional emission from photonic-crystal waveguides,�?? Appl. Phys. Lett. 86, 081110 (2005).
    [CrossRef]
  24. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature 391, 667-669 (1998).
    [CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, �??Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate,�?? Appl. Phys. Lett. 81, 4661-4663 (2002).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, �??Focusing light with a single subwavelength aperture flanked by surface corrugations,�?? Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, �??Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,�?? Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, �??Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,�?? Appl. Phys. Lett. 85, 1098-1100 (2004).
[CrossRef]

S. K. Morrison and Y. S. Kivshar, �??Engineering of directional emission from photonic-crystal waveguides,�?? Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

IEEE Microw. Wirel. Co.

M. Beruete, M. Sorolla, I. Campillo, and J. S. Dolado, �??Subwavelength Slotted Corrugated Plate with Enhanced Quasioptical Millimeter Wave Transmission,�?? IEEE Microw. Wirel. Co. 15, 286-288 (2005).
[CrossRef]

J. Opt. A

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, �??Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves,�?? J. Opt. A 7, S152-S158 (2005).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, �??Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,�?? J. Opt. A 7, S159-S164 (2005).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature 391, 667-669 (1998).
[CrossRef]

Opt. Express

H. J. Lezec and T. Thio, �??Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,�?? Opt. Express 12, 3629-3651 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3629">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3629</a>.
[CrossRef] [PubMed]

A. Degiron and T. W. Ebbesen, �??Analysis of the transmission process through single apertures surrounded by periodic corrugations,�?? Opt. Express 12, 3694-3700 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3694">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3694</a>.
[CrossRef] [PubMed]

H. Cao, A. Agrawal, and A. Nahata, �??Controlling the transmission resonance lineshape of a single subwavelength aperture,�?? Opt. Express 13, 763-769 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-763">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-763</a>.
[CrossRef] [PubMed]

H. Caglayan, I. Bulu, and E. Ozbay, �??Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture,�?? Opt. Express 13, 1666-1671 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1666">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1666</a>.
[CrossRef] [PubMed]

A. Agrawal, H. Cao, and A. Nahata, �??Time-domain analysis of enhanced transmission through a single subwavelength aperture,�?? Opt. Express 13, 3535-3542 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3535">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3535</a>.
[CrossRef] [PubMed]

Photon. Nanostruct.

J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, �??Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,�?? Photon. Nanostruct. 1, 55-62 (2003).
[CrossRef]

Phys. Rev.

H. A. Bethe, �??Theory of diffraction by small holes,�?? Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Phys. Rev. B

L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, �??Physical origin of directional beaming emitted from a subwavelength slit,�?? Phys. Rev. B 71, 041405 (2005).
[CrossRef]

E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, �??Enhanced transmission and beaming of light via photonic crystal surface modes,�?? Phys. Rev. B 69, 121402(R) (2004).
[CrossRef]

Phys. Rev. Lett.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, �??Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width,�?? Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, �??Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations,�?? Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, �??Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,�?? Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

Science

H. J. Lezec, A. Degiron, B. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, �??Beaming Light from a Subwavelength Aperture,�?? Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Solid State Commun.

D. A. Thomas and H. P. Hughes, �??Enhanced optical transmission through a subwavelength 1D aperture,�?? Solid State Commun. 129, 519-524 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Structures under study: (a) Dielectric-Ag (DA); (b) Ag-Dielectric (AD); (c) Dielectric-Ag-Dielectric (DAD).

Fig. 2.
Fig. 2.

Normalized-to-area transmission spectra of structure DA (a) with hdi = ddi = 200 nm; AD (b) with hdi = ddi = 160 nm; DAD (c) with hdi = 200 nm and ddi = 180 nm. Patterns of light emitting from AD (d) and DAD (e) structures at wavelength of transmission peak (λ = 500 nm and 530 nm respectively).

Fig. 3.
Fig. 3.

Tmax (a) and λmax (b) of the two transmission peaks as a function of thickness of dielectric film with ddi = hdi in DA structure with grooves only on the incident surface.

Fig. 4.
Fig. 4.

Models of the mechanisms of the enhancement for peak one (a) and peak two (b).

Fig. 5.
Fig. 5.

Tmax (a) and λmax (b) of the two transmission peaks as a function of groove period with hdi = ddi = 200 nm in DA structure with grooves only on the incident surface.

Fig. 6.
Fig. 6.

Tmax (a) and λmax (b) of the two transmission peaks as a function of refractive index of dielectric film with hdi = ddi = 200 nm in DA structure with grooves only on the incident surface.

Fig. 7.
Fig. 7.

Tmax of peak two as a function of distance from interface to groove bottom (hdi - ddi ) with hdi = 200 nm in DA structure with grooves only on the incident surface.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ = n p 2 + ( 3 h di d di ) 2 ( h di d di ) + Δ ,
Δ = n p 2 + 4 h di 2 + Δ .
θ = arctg p 3 h di d di ,
θ = arctg p 2 h di ,

Metrics