Abstract

InGaAsN triple-quantum-well (TQW) 4-μm ridge waveguide (RWG) lasers were fabricated using pulsed anodic oxidation. High output power of 290 mW (both facets), low transparency current density of 389 A/cm2 (equivalent to 130 A/cm2/well) and high characteristic temperature (T0) of 157.2 K were obtained from the InGaAsN TQW RWG lasers. InGaAsN single-quantum-well (SQW) 4-μm RWG lasers were also fabricated for comparison. Extremely low threshold current (Ith) of 15.7 mA was obtained from InGaAsN SQW RWG laser (4 × 500 μm2). However, InGaAsN SQW laser showed strong temperature dependence of Ith and presented much lower T0 than that of InGaAsN TQW lasers. Ridge height effects on the T0 of RWG lasers were also demonstrated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Fehse, S. Tomic, A.R. Adams, S.J. Sweeney, E.P. O�??Reilly, A. Andreev, and H. Riechert, �??A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-μm GaInNAs-based quantum-well lasers,�?? IEEE J. Sel .Top. Quantum Electron. 8, 801-810 (2002).
    [CrossRef]
  2. W. Ha, V. Gambin, M. Wistey, S. Bank, S. Kim, and J. S. Harris Jr., �??Multiple quantum well GaInNAs-GaNA�??s ridge-waveguide laser diodes operating out to 1.4 μm,�?? IEEE Photon. Technol. Lett. 14, 591-593 (2002).
    [CrossRef]
  3. A.R. Kovsh, J.S. Wang, R.S. Hsiao, L.P. Chen, D.A. Livshits, G. Lin, V.M. Ustinov, and J.Y. Chi, �??High-power (200mW) singlemode operation of InGaAsN/GaAs ridge waveguide lasers with wavelength around 1.3 μm,�?? Electron. Lett. 39, 1276-1277 (2003).
    [CrossRef]
  4. N. Tansu, J-Y. Yeh, and L. J. Mawst, �??High-Performance 1200-nm InGaAs and 1300-nm InGaAsN Quantum-Well Lasers by Metalorganic Chemical Vapor Deposition,�?? IEEE J. Sel .Top. Quantum Electron. 9, 1220-1227 (2003).
    [CrossRef]
  5. N. Tansu, J. Y. Yeh, and L. J. Mawst, �??Physics and Characteristics of 1200-nm InGaAs and 1300-1400 nm InGaAsN Quantum-Well Lasers by Metalorganic Chemical Vapor Deposition,�?? J. Phys. Condens. Matter, 16, S3277-S3318 (2004).
    [CrossRef]
  6. D. Gollub, S. Moses, and A. Forchel, �??Comparison of GaInNAs laser diodes based on two to five quantum wells,�?? IEEE J. Quantum Electron. 40, 337-342 (2004).
    [CrossRef]
  7. C.Y. Liu, S.F. Yoon, S.Z. Wang, W.J. Fan, Y. Qu, and S. Yuan, �??Fabrication of High-performance InGaAsN Ridge Waveguide Lasers with Pulsed Anodic Oxidation,�?? IEEE Photon. Technol. Lett. 16, 2409-2411 (2004).
    [CrossRef]
  8. C.Y. Liu, Y. Qu, S. Yuan, and S.F. Yoon, �??Optimization of ridge height for the fabrication of high performance InGaAsN ridge waveguide lasers with pulsed anodic oxidation,�?? Appl. Phys. Lett. 85, 4594-4596 (2004).
    [CrossRef]
  9. Y. Qu, C.Y. Liu, and S. Yuan, �??High-power 1.3-μm InGaAsN strain-compensated lasers fabricated with pulsed anodic oxidation,�?? Appl. Phys. Lett. 85, 5149-5151 (2004).
    [CrossRef]
  10. N. Tansu and L. J. Mawst, �??Current injection efficiency of InGaAsN quantum-well lasers,�?? J. Appl. Phys. 97, 054502 (2005).
    [CrossRef]
  11. S.M. Wang, Y.Q. Wei, X.D. Wang, Q.X. Zhao, M. Sadeghi, and A. Larsson, �??Very low threshold current density 1.3 μm GaInNAs single-quantum well lasers grown by molecular beam epitaxy,�?? J. Cryst. Growth 278, 734-738 (2005).
    [CrossRef]
  12. B. Dagens, A. Martinez, D. Make, O.L. Gouezigou, J.G. Provost, V. Sallet, K. Merghem, J.C. Harmand, A. Ramdane, and B. Thedrez, �??Floor free 10-Gb/s transmission with directly modulated GaInNAs-GaAs 1.35-μm laser for metropolitan applications,�?? IEEE Photon. Technol. Lett. 17, 971-973 (2005).
    [CrossRef]
  13. M. Yamada, T. Anan, H. Hatakeyama, K. Tokutome, N. Suzuki, T. Nakamura, and K. Nishi, �??Lowthreshold operation of 1.34-μm GaInNAs VCSEL grown by MOVPE,�?? IEEE Photon. Technol. Lett. 17, 950-952 (2005).
    [CrossRef]
  14. H. Carrère, X. Marie, J. Barrau, and T. Amand, �??Comparison of the optical gain of InGaAsN quantum-well lasers with GaAs or GaAsP barriers,�?? Appl. Phys. Lett. 86, 071116 (2005).
    [CrossRef]
  15. C.Y. Liu, S.F. Yoon, W.J. Fan, Z.Z. Sun, and R.J.W. Tew, �??Ridge Width Effect on the Characteristic Temperature of GaInNAs Triple Quantum Well Ridge Waveguide Lasers�??, in Proceedings of IQEC/CLEO-PR 2005 (International Quantum Electronics Conference 2005 and the Pacific Rim Conference on Lasers and Electro-Optics 2005, Japan, 2005), CWAB3-P31.
  16. D.P. Bour, M. Kneissl, L.T. Romano, R.M. Donaldson, C.J. Dunnrowicz, N.M. Johnson, and G.A. Evans, �??Stripe-width dependence of threshold current for gain-guided AlGaInN laser diodes,�?? Appl. Phys. Lett. 74, 404-406 (1999).
    [CrossRef]
  17. S.L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995).

Appl. Phys. Lett. (4)

C.Y. Liu, Y. Qu, S. Yuan, and S.F. Yoon, �??Optimization of ridge height for the fabrication of high performance InGaAsN ridge waveguide lasers with pulsed anodic oxidation,�?? Appl. Phys. Lett. 85, 4594-4596 (2004).
[CrossRef]

Y. Qu, C.Y. Liu, and S. Yuan, �??High-power 1.3-μm InGaAsN strain-compensated lasers fabricated with pulsed anodic oxidation,�?? Appl. Phys. Lett. 85, 5149-5151 (2004).
[CrossRef]

H. Carrère, X. Marie, J. Barrau, and T. Amand, �??Comparison of the optical gain of InGaAsN quantum-well lasers with GaAs or GaAsP barriers,�?? Appl. Phys. Lett. 86, 071116 (2005).
[CrossRef]

D.P. Bour, M. Kneissl, L.T. Romano, R.M. Donaldson, C.J. Dunnrowicz, N.M. Johnson, and G.A. Evans, �??Stripe-width dependence of threshold current for gain-guided AlGaInN laser diodes,�?? Appl. Phys. Lett. 74, 404-406 (1999).
[CrossRef]

Electron. Lett. (1)

A.R. Kovsh, J.S. Wang, R.S. Hsiao, L.P. Chen, D.A. Livshits, G. Lin, V.M. Ustinov, and J.Y. Chi, �??High-power (200mW) singlemode operation of InGaAsN/GaAs ridge waveguide lasers with wavelength around 1.3 μm,�?? Electron. Lett. 39, 1276-1277 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Gollub, S. Moses, and A. Forchel, �??Comparison of GaInNAs laser diodes based on two to five quantum wells,�?? IEEE J. Quantum Electron. 40, 337-342 (2004).
[CrossRef]

IEEE J. Sel .Top. Quantum Electron. (2)

N. Tansu, J-Y. Yeh, and L. J. Mawst, �??High-Performance 1200-nm InGaAs and 1300-nm InGaAsN Quantum-Well Lasers by Metalorganic Chemical Vapor Deposition,�?? IEEE J. Sel .Top. Quantum Electron. 9, 1220-1227 (2003).
[CrossRef]

R. Fehse, S. Tomic, A.R. Adams, S.J. Sweeney, E.P. O�??Reilly, A. Andreev, and H. Riechert, �??A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-μm GaInNAs-based quantum-well lasers,�?? IEEE J. Sel .Top. Quantum Electron. 8, 801-810 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

W. Ha, V. Gambin, M. Wistey, S. Bank, S. Kim, and J. S. Harris Jr., �??Multiple quantum well GaInNAs-GaNA�??s ridge-waveguide laser diodes operating out to 1.4 μm,�?? IEEE Photon. Technol. Lett. 14, 591-593 (2002).
[CrossRef]

C.Y. Liu, S.F. Yoon, S.Z. Wang, W.J. Fan, Y. Qu, and S. Yuan, �??Fabrication of High-performance InGaAsN Ridge Waveguide Lasers with Pulsed Anodic Oxidation,�?? IEEE Photon. Technol. Lett. 16, 2409-2411 (2004).
[CrossRef]

B. Dagens, A. Martinez, D. Make, O.L. Gouezigou, J.G. Provost, V. Sallet, K. Merghem, J.C. Harmand, A. Ramdane, and B. Thedrez, �??Floor free 10-Gb/s transmission with directly modulated GaInNAs-GaAs 1.35-μm laser for metropolitan applications,�?? IEEE Photon. Technol. Lett. 17, 971-973 (2005).
[CrossRef]

M. Yamada, T. Anan, H. Hatakeyama, K. Tokutome, N. Suzuki, T. Nakamura, and K. Nishi, �??Lowthreshold operation of 1.34-μm GaInNAs VCSEL grown by MOVPE,�?? IEEE Photon. Technol. Lett. 17, 950-952 (2005).
[CrossRef]

IQEC/CLEO-PR 2005 (1)

C.Y. Liu, S.F. Yoon, W.J. Fan, Z.Z. Sun, and R.J.W. Tew, �??Ridge Width Effect on the Characteristic Temperature of GaInNAs Triple Quantum Well Ridge Waveguide Lasers�??, in Proceedings of IQEC/CLEO-PR 2005 (International Quantum Electronics Conference 2005 and the Pacific Rim Conference on Lasers and Electro-Optics 2005, Japan, 2005), CWAB3-P31.

J. Appl. Phys. (1)

N. Tansu and L. J. Mawst, �??Current injection efficiency of InGaAsN quantum-well lasers,�?? J. Appl. Phys. 97, 054502 (2005).
[CrossRef]

J. Cryst. Growth (1)

S.M. Wang, Y.Q. Wei, X.D. Wang, Q.X. Zhao, M. Sadeghi, and A. Larsson, �??Very low threshold current density 1.3 μm GaInNAs single-quantum well lasers grown by molecular beam epitaxy,�?? J. Cryst. Growth 278, 734-738 (2005).
[CrossRef]

J. Phys. Condens. Matter (1)

N. Tansu, J. Y. Yeh, and L. J. Mawst, �??Physics and Characteristics of 1200-nm InGaAs and 1300-1400 nm InGaAsN Quantum-Well Lasers by Metalorganic Chemical Vapor Deposition,�?? J. Phys. Condens. Matter, 16, S3277-S3318 (2004).
[CrossRef]

Other (1)

S.L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) CW P-I characteristic of a P-side-down bonded InGaAsN TQW laser (4 × 1600 (μm2). The upper inset shows the SEM cross sectional image of the InGaAsN laser fabricated with PAO. The lower inset shows the schematic band diagram of InGaAsN TQW laser structure. (b) ln (Jth ) as function of 1/L from a batch of InGaAsN TQW 4-μm RWG lasers. Jtr was determined to be 389 A/cm2. The inset shows 1/ηd as a function of L. ηi and αi were determined to be 93.6 % and 9.6 cm-1, respectively.

Fig. 2.
Fig. 2.

Temperature-dependent (20-100 °C) CW P-I characteristics of an InGaAsN TQW laser (4 × 1500 μm2). The inset shows the ln(Ith ) as a function of device temperature from InGaAsN TQW 4-nm RWG lasers with different cavity length L of 500, 1000, and 1500 μm, respectively. T0 was calculated to be 143.5 K, 153.7 K, and 157.2 K, respectively, in the linear region (20–80 °C).

Fig. 3.
Fig. 3.

Temperature-dependent (20–80 °C) CW P-I characteristics of an unbonded InGaAsN SQW 4-μm RWG laser fabricated with PAO. The inset (left) shows the lasing spectrum from the InGaAsN SQW RWG laser. The right inset shows the comparison of ln (Ith ) as a function of device temperature (20–80 °C) from InGaAsN SQW laser, L=500 μm and 1500 μm, with T0 of 62.4 and 78 K, respectively, as well as InGaAsN TQW laser, L=500 μm, with T0 of 143.5 K.

Fig. 4.
Fig. 4.

ln (Ith ) as a function of device temperature (20–80 °C) from InGaAs SQW 50-μm RWG lasers with ridge height (h) of 0.39, 1.23, and 1.77 μm, respectively. The inset shows T0 as a function of h of 0.39, 0.80, 1.23, 1.55, 1.77 μm, respectively, in the region of (20–80 °C).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ln J th = ln ( e J tr η i ) + α i Γ g o + 1 Γ g o L ln ( 1 R ) 1 .
η d 1 = η i 1 { α i + 1 L ln 1 R 1 L ln 1 R } .
I th = I o exp ( T T o ) .
1 T 0 ( L ) = 1 T tr + 1 T η inj + Γ · g th ( = α i + 1 L ln 1 R ) Γ · g 0 · 1 T g 0 + α i Γ · g 0 · 1 T α i .

Metrics