Abstract

We have produced a high beam quality pico-second laser based on a continuous-wave diode pumped Nd:YVO4 slab amplifier with a photorefractive phase conjugate mirror. 12.8W diffraction-limited output with a pulse width of 8.7ps was obtained.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. J. Sphler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander and G. Truong �??Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam,�?? Opt. Lett. 24, 528-530
  2. A. W. Tucker, M. Birnbaum, C. L. Fincher and J. W. Erler, �??Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,�?? J. Appl. Phys. 48, 4907-4911 (1977).
    [CrossRef]
  3. R. A. Fields, M. Birnbaum and C. L. Fincher, �??Highly efficient Nd:YVO4 diode-laser end-pumped laser,�?? Appl. Phys. Lett. 51, 1885-1886 (1987).
    [CrossRef]
  4. D. Shen, A.Liu, J. Song and K. Ueda, �??Efficient Operation of an Intracavity-Doubled Nd:YVO4 KTP Laser End Pumped by a High-Brightness Laser Diode,�?? Appl. Opt. 37, 7785-7788 (1998).
    [CrossRef]
  5. J.E. Bernard, and A. J. Alcock, �??High-efficiency diode-pumped Nd:YVO4 slab laser,�?? Opt. Lett. 18, 968-970 (1993).
    [CrossRef] [PubMed]
  6. J.E. Bernard, and A. J. Alcock, �??High-repetition-rate diode-pumped Nd:YVO4 slab laser,�?? Opt. Lett. 19, 1861-1863 (1994).
    [CrossRef] [PubMed]
  7. M.J. Damzen, M. Trew, E. Rosas, and G.J. Crofts, �??Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 64% conversion efficieny,�?? Opt. Commun. 196, 237-241 (2001).
    [CrossRef]
  8. H. Zimer, K. Albers, and U. Wittrock, " Grazing-incidence YVO4�??Nd:YVO4 composite thin slab laser with low thermo-optic aberrations," Opt. Lett. 29, 2761-2763 (2004).
    [CrossRef] [PubMed]
  9. Jason M. Hendricks, David I. Hillier, Stephen J. Barrington, David P. Shepherd, Robert W. Eason, Michael J. Damzen, Ara Minassian and Benjamin Thompson, "Power scaling of continuous-wave adaptive gain-grating laser resonators," Opt. Commun. 205, 197-205 (2002).
    [CrossRef]
  10. Kazuyoku Tei, Yoshito Niwa, Fumiaki Matsuoka, Masaaki Kato, Yoichiro Maruyama and Takashi Arisawa, "Photorefractive phase conjugator for Nd:YAG laser system," Nucl. Instr. and Meth. A 455, 244-246 (2000)
    [CrossRef]
  11. T. Imaizumi, M. Goto, Y. Ojima and T. Omatsu, "Characterization of a pico-second phase conjugate Nd:YVO4 laser system, Jpn. J. Appl. Phys. 43, 2515-2518 (2004).
    [CrossRef]

Appl. Opt.

Appl. Phys. Lett.

R. A. Fields, M. Birnbaum and C. L. Fincher, �??Highly efficient Nd:YVO4 diode-laser end-pumped laser,�?? Appl. Phys. Lett. 51, 1885-1886 (1987).
[CrossRef]

J. Appl. Phys.

A. W. Tucker, M. Birnbaum, C. L. Fincher and J. W. Erler, �??Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,�?? J. Appl. Phys. 48, 4907-4911 (1977).
[CrossRef]

Jpn. J. Appl. Phys

T. Imaizumi, M. Goto, Y. Ojima and T. Omatsu, "Characterization of a pico-second phase conjugate Nd:YVO4 laser system, Jpn. J. Appl. Phys. 43, 2515-2518 (2004).
[CrossRef]

Nucl. Instr. and Meth. A

Kazuyoku Tei, Yoshito Niwa, Fumiaki Matsuoka, Masaaki Kato, Yoichiro Maruyama and Takashi Arisawa, "Photorefractive phase conjugator for Nd:YAG laser system," Nucl. Instr. and Meth. A 455, 244-246 (2000)
[CrossRef]

Opt. Commun.

Jason M. Hendricks, David I. Hillier, Stephen J. Barrington, David P. Shepherd, Robert W. Eason, Michael J. Damzen, Ara Minassian and Benjamin Thompson, "Power scaling of continuous-wave adaptive gain-grating laser resonators," Opt. Commun. 205, 197-205 (2002).
[CrossRef]

M.J. Damzen, M. Trew, E. Rosas, and G.J. Crofts, �??Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 64% conversion efficieny,�?? Opt. Commun. 196, 237-241 (2001).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Experimental setup of phase conjugate double pass amplifier.

Fig. 2.
Fig. 2.

Experimental output power from the phase conjugate double pass amplifier.

Fig. 3.
Fig. 3.

Experimental setup of phase conjugate multi pass amplifier

Fig. 4.
Fig. 4.

Experimental output power from phase conjugate multi pass amplifier. Red closed circle shows multi pass experimental value, blue open rectangle shows double pass experimental value. Red and blue dashed lines show simulated values of multi and double pass output (see discussion).

Fig. 5.
Fig. 5.

Experimental output power from phase conjugate multi pass amplifier.

Fig. 6.
Fig. 6.

Far field pattern of the output from the phase conjugate multi pass amplifier.

Fig. 7.
Fig. 7.

Intensity autocorrelation traces. Red line is signal beam. Dash line is output beam.

Fig. 8.
Fig. 8.

Experimental frequency spectra. Red line is signal beam. Dash line is output beam.

Fig. 9.
Fig. 9.

Numerical simulated model of the four pass amplifier.

Metrics