Abstract

We demonstrate that semiconductor nanowires can be translated, rotated, cut, fused and organized into nontrivial structures using holographic optical traps. The holographic approach to nano-assembly allows for simultaneous independent manipulation of multiple nanowires, including relative translation and relative rotation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. M. Morales and C. M. Lieber, �??A laser ablation method for the synthesis of crystalline semiconductor nanowires,�?? Science 279, 208�??211 (1998).
    [CrossRef] [PubMed]
  2. J. T. Hu, T. W. Odom, and C. M. Lieber, �??Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes,�?? Acc. Chem. Res. 32, 435�??445 (1999).
    [CrossRef]
  3. C. M. Lieber, �??Nanoscale science and technology: Building a big future from small things,�?? MRS Bulletin 28, 486�??491 (2003).
    [CrossRef]
  4. L. Samuelson, �??Self-forming nanoscale devices,�?? Materials Today 6, 22�??31 (2003).
    [CrossRef]
  5. L. W. Zhong, �??Nanostructures of zinc oxide,�?? Materials Today 7, 26�??33 (2004).
    [CrossRef]
  6. C. C. Huang, C. F. Wang, D. S. Mehta, and A. Chiou, �??Optical tweezers as sub-pico-newton force transducers,�?? Opt. Commun. 195(1-4), 41�??48 (2001).
    [CrossRef]
  7. X. F. Duan, Y. Huang, Y. Cui, J. F.Wang, and C. M. Lieber, �??Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,�?? Nature 409, 66�??69 (2001).
    [CrossRef] [PubMed]
  8. D. Whang, S. Jin, Y. Wu, and C. M. Lieber, �??Large-scale hierarchical organization of nanowire arrays for integrated nanosystems,�?? Nano Lett. 3, 1255�??1259 (2003).
    [CrossRef]
  9. E. R. Dufresne and D. G. Grier, �??Optical tweezer arrays and optical substrates created with diffractive optical elements,�?? Rev. Sci. Instrum. 69, 1974�??1977 (1998).
    [CrossRef]
  10. J. E. Curtis, B. A. Koss, and D. G. Grier, �??Dynamic holographic optical tweezers,�?? Opt. Commun. 207(1-6), 169�??175 (2002).
    [CrossRef]
  11. M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, �??Optimized holographic optical traps,�?? Opt. Express 13, 5831�??5845 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-15-5831">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-15-5831</a>
    [CrossRef] [PubMed]
  12. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. Lett. 11, 288�??290 (1986).
    [CrossRef] [PubMed]
  13. G. K. Batchelor, �??Slender-body theory for particles of arbitrary cross-section in Stokes flow,�?? J. Fluid Mech. 44, 419 (1970).
    [CrossRef]
  14. Y. Takaisi, �??Note on the drag on a circular cylinder moving with low speeds in a semi-infiniite liquid bounded by a plane wall,�?? J. Phys. Soc. Japan 11, 1004�??1008 (1955).
  15. T. Yu, F. C. Cheong, and C. H. Sow, �??The manipulation and assembly of CuO nanorods with line optical tweezers,�?? Nanotechnology 15, 1732�??1736 (2004).
    [CrossRef]
  16. R. J. Collins, �??Mechanism and defect responsible for edge emission in CdS,�?? J. Appl. Phys. 30, 1135�??1140 (1959).
    [CrossRef]
  17. D. M. Banall, B. Ullrich, H. Sakai, and Y. Segawa, �??Micro-cavity lasing of optically excited CdS thin films at room temperature,�?? J. Cryst. Growth 214/215, 1015�??1018 (2000).
    [CrossRef]
  18. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,�?? J. Mod. Opt. 42, 217�??223 (1995).
    [CrossRef]
  19. N. B. Simpson, L. Allen, and M. J. Padgett, �??Optical tweezers and optical spanners with Laguerre-Gaussian modes,�?? J. Mod. Opt. 43, 2485�??2491 (1996).
    [CrossRef]
  20. K. T. Gahagan and G. A. Swartzlander, �??Optical vortex trapping of particles,�?? Opt. Lett. 21, 827�??829 (1996).
    [CrossRef] [PubMed]
  21. J. E. Curtis and D. G. Grier, �??Structure of optical vortices,�?? Phys. Rev. Lett. 90, 133,901 (2003).
    [CrossRef]
  22. S. Sundbeck, I. Gruzberg, and D. G. Grier, �??Structure and scaling of helical modes of light,�?? Opt. Lett. 30, 477�??479 (2005).
    [CrossRef] [PubMed]
  23. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, �??Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes,�?? Phys. Rev. A 45, 8185�??8189 (1992).
    [CrossRef] [PubMed]
  24. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,�?? Phys. Rev. Lett. 75, 826�??829 (1995).
    [CrossRef] [PubMed]
  25. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, �??Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner,�?? Opt. Lett. 22, 52�??54 (1997).
    [CrossRef] [PubMed]
  26. A. T. O�??Neil, I. MacVicar, L. Allen, and M. J. Padgett, �??Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,�?? Phys. Rev. Lett. 88, 053,601 (2002).
    [CrossRef]
  27. A. P. Joglekar, H.-H. Liu, E. Meyhofer, G. Mourou, and A. J. Hunt, �??Optics at critical intensity: Applications to nanomorphing,�?? Proc. Nat. Acad. Sci. 101, 5856�??5861 (2004).
    [CrossRef] [PubMed]
  28. J. Plewa, E. Tanner, D.M. Mueth, and D. G. Grier, �??Processing carbon nanotubes with holographic optical tweezers,�?? Opt. Express 12, 1978�??1981 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1978">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1978</a>
    [CrossRef] [PubMed]
  29. K. Ajito and K. Torimitsu, �??Single nanoparticle trapping using a Raman tweezers microscope,�?? Appl. Spec. 56, 541�??544 (2002).
    [CrossRef]

Acc. Chem. Res.

J. T. Hu, T. W. Odom, and C. M. Lieber, �??Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes,�?? Acc. Chem. Res. 32, 435�??445 (1999).
[CrossRef]

Appl. Spec.

K. Ajito and K. Torimitsu, �??Single nanoparticle trapping using a Raman tweezers microscope,�?? Appl. Spec. 56, 541�??544 (2002).
[CrossRef]

J. Appl. Phys.

R. J. Collins, �??Mechanism and defect responsible for edge emission in CdS,�?? J. Appl. Phys. 30, 1135�??1140 (1959).
[CrossRef]

J. Cryst. Growth

D. M. Banall, B. Ullrich, H. Sakai, and Y. Segawa, �??Micro-cavity lasing of optically excited CdS thin films at room temperature,�?? J. Cryst. Growth 214/215, 1015�??1018 (2000).
[CrossRef]

J. Fluid Mech.

G. K. Batchelor, �??Slender-body theory for particles of arbitrary cross-section in Stokes flow,�?? J. Fluid Mech. 44, 419 (1970).
[CrossRef]

J. Mod. Opt.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,�?? J. Mod. Opt. 42, 217�??223 (1995).
[CrossRef]

N. B. Simpson, L. Allen, and M. J. Padgett, �??Optical tweezers and optical spanners with Laguerre-Gaussian modes,�?? J. Mod. Opt. 43, 2485�??2491 (1996).
[CrossRef]

J. Phys. Soc.

Y. Takaisi, �??Note on the drag on a circular cylinder moving with low speeds in a semi-infiniite liquid bounded by a plane wall,�?? J. Phys. Soc. Japan 11, 1004�??1008 (1955).

Materials Today

L. Samuelson, �??Self-forming nanoscale devices,�?? Materials Today 6, 22�??31 (2003).
[CrossRef]

L. W. Zhong, �??Nanostructures of zinc oxide,�?? Materials Today 7, 26�??33 (2004).
[CrossRef]

MRS Bulletin

C. M. Lieber, �??Nanoscale science and technology: Building a big future from small things,�?? MRS Bulletin 28, 486�??491 (2003).
[CrossRef]

Nano Lett.

D. Whang, S. Jin, Y. Wu, and C. M. Lieber, �??Large-scale hierarchical organization of nanowire arrays for integrated nanosystems,�?? Nano Lett. 3, 1255�??1259 (2003).
[CrossRef]

Nanotechnology

T. Yu, F. C. Cheong, and C. H. Sow, �??The manipulation and assembly of CuO nanorods with line optical tweezers,�?? Nanotechnology 15, 1732�??1736 (2004).
[CrossRef]

Nature

X. F. Duan, Y. Huang, Y. Cui, J. F.Wang, and C. M. Lieber, �??Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,�?? Nature 409, 66�??69 (2001).
[CrossRef] [PubMed]

Opt. Commun.

C. C. Huang, C. F. Wang, D. S. Mehta, and A. Chiou, �??Optical tweezers as sub-pico-newton force transducers,�?? Opt. Commun. 195(1-4), 41�??48 (2001).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, �??Dynamic holographic optical tweezers,�?? Opt. Commun. 207(1-6), 169�??175 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, �??Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes,�?? Phys. Rev. A 45, 8185�??8189 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,�?? Phys. Rev. Lett. 75, 826�??829 (1995).
[CrossRef] [PubMed]

A. T. O�??Neil, I. MacVicar, L. Allen, and M. J. Padgett, �??Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,�?? Phys. Rev. Lett. 88, 053,601 (2002).
[CrossRef]

J. E. Curtis and D. G. Grier, �??Structure of optical vortices,�?? Phys. Rev. Lett. 90, 133,901 (2003).
[CrossRef]

Proc. Nat. Acad. Sci.

A. P. Joglekar, H.-H. Liu, E. Meyhofer, G. Mourou, and A. J. Hunt, �??Optics at critical intensity: Applications to nanomorphing,�?? Proc. Nat. Acad. Sci. 101, 5856�??5861 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

E. R. Dufresne and D. G. Grier, �??Optical tweezer arrays and optical substrates created with diffractive optical elements,�?? Rev. Sci. Instrum. 69, 1974�??1977 (1998).
[CrossRef]

Science

A. M. Morales and C. M. Lieber, �??A laser ablation method for the synthesis of crystalline semiconductor nanowires,�?? Science 279, 208�??211 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Holographically trapping semiconductor nanowires. (a) The light from a frequency-doubled solid-state laser is imprinted with a computer-generated hologram by a phase-shifting spatial light modulator (SLM) before being relayed to the input pupil of a high-numerical-aperture objective lens, which focuses the light into an array of optical traps, shown in (b). (c) An individual semiconductor nanowire can be localized by multiple optical traps, whose intersection with the wire typically is visualized by intense laser-induced fluorescence, as in (d).

Fig. 2.
Fig. 2.

Translation and rotation of semiconductor nanowires by holographic trap arrays. (a) Two free-floating semiconductor nanowires translated toward each other with parallel arrays of holographic optical traps. One wire is held stationary in one line of traps while the other is translated by moving a second line of traps in discrete steps of 700 nm. The traps in each line are separated by 0.4 μm and each trap is powered by 3 mW. (b) Rotating a semiconductor nanowire by rotating an array of traps in discrete steps of 5°. The optically trapped CdS nanowires in these sequences appear bright because of photoluminescence excited by the strongly focused optical traps. Because these images are created with a filter that blocks the bandgap emission of CdS [16], the luminescence can be attributed to emission from defect sites in the CdS material [17].

Fig. 3.
Fig. 3.

Rotating a semiconductor nanowire with the orbital angular momentum flux of a helical mode of light. (a) When transmitted to the SLM, the helical phase mask φ(r,θ) =ℓθ transforms the wavefronts of a TEM00 laser mode into an -fold helix. This helical beam focuses into the ring-like optical trap, shown in (b). The orbital angular momentum density in this trap can be used to rotate a semiconductor nanowire, as shown in the sequence of photographs in (c), which are separated by 1 sec intervals. The dashed circle shows the position of an = 30 optical vortex at 1 W.

Fig. 4.
Fig. 4.

Transforming nanowires with intense focused beams of light. (a) Cutting a semiconductor nanowire with an optical scalpel. A bent nanowire is brought to the focus of an optical trap powered by 0.5 W. An exposure time of 100 ms results in a clean cut at the bend. (b) Fusing two semiconductor nanowires into a free-floating assembly. The two nanowires are first trapped and then manipulated to form a T-junction. An optical trap powered by 100 mW is then focused on the junction for 1 s to non-destructively fuse the wires. The T-junction then floats freely once the traps are extinguished.

Fig. 5.
Fig. 5.

Assembly of rhombus constructed from semiconductor nanowires using holographic optical traps. (a) A nanowire is translated towards an existing structure created earlier by trapping and fusing two nanowires. (b) The long nanowire is then cut with a pulsed optical scalpel. (c) The resulting free-floating nanowire piece then is brought back to the partially completed structure. (d) The free-floating structure is completed by fusing both ends of the fourth nanowire.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F = 4 πη ( ε + 0.193 ε 2 + 0.215 ε 2 ) Lu ,
F ( h ) = F ln ( 2 h a ) ,

Metrics