Abstract

We demonstrate that scattering-type scanning near-field optical microscopy (s-SNOM) allows nanoscale-resolved imaging of objects below transparent surface layers at both visible and mid-infrared wavelengths. We show topography-free subsurface imaging at λ=633 nm. At λ=10.7 μm, gold islands buried 50 nm below a polymer surface are imaged with a lateral resolution < 120 nm, corresponding to λ/90. Studying oxide layers with systematically varied thicknesses we provide experimental evidence of mid-infrared near-field probing in depths > 80 nm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, "Tip-enhanced Fluorescence Microscopy at 10 nm resolution," Phys. Rev. Lett. 93, 180801-4 (2004).
    [CrossRef] [PubMed]
  2. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, "High resolution Imaging of Single Fluorescent molecules with the optical Near-field of a Metal Tip," Phys. Rev. Lett. 93, 200801-4 (2004).
    [CrossRef] [PubMed]
  3. A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, "High-resolution near-field Raman microscopy of single-walled carbon nanotubes," Phys. Rev. Lett. 90, 095503-1 (2003).
    [CrossRef] [PubMed]
  4. N. Hayazawa, Y. Inouye, Y. Sekkat, and S. Kawata, "Near-field Raman imaging of organic molecules by an apertureless metallic probe scanning optical microscope," J. Chem. Phys. 117, 1296-1301 (2002).
    [CrossRef]
  5. R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometer scale," Nature 418, 159-162 (2002).
    [CrossRef] [PubMed]
  6. N. Ocelic and R. Hillenbrand, "Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation," Nature Mat. 3, 606-609 (2004).
    [CrossRef]
  7. T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer identification by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85, 5064-5066 (2004).
    [CrossRef]
  8. A. Hartschuh, M. Beversluis, A. Bouhelier, and L. Novotny, "Tip-enhanced optical spectroscopy," Phil. Trans. R. Soc. Lond. 362, 807-819 (2004).
    [CrossRef]
  9. F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Phil. Trans. R. Soc. Lond. 362, 787-805 (2004).
    [CrossRef]
  10. B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
    [CrossRef]
  11. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning interferometric apertureless microscopy: optical imaging at 10 Angstrom resolution," Science 269, 1083-1085 (1995).
    [CrossRef] [PubMed]
  12. Y. Inouye and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19, 159-161 (1994).
    [CrossRef] [PubMed]
  13. M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, "Scanning plasmon near-field microscopy," Phys. Rev. Lett. 68, 476-479 (1992).
    [CrossRef] [PubMed]
  14. T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microscopy 210, 311-314 (2003).
    [CrossRef]
  15. A. Lahrech, R. Bachelot, P. Gleyzes, and A. C. Boccara, "Infrared-reflection-mode near-field microscopy using an apertureless probe with a resolution of λ/600," Opt. Lett. 21, 1315-1317 (1996).
    [CrossRef] [PubMed]
  16. M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering," Appl. Phys. Lett. 83, 5089-5091 (2003).
    [CrossRef]
  17. G. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J. Appl. Phys. 5, 269-275 (1999).
    [CrossRef]
  18. R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
    [CrossRef] [PubMed]
  19. D. Haefliger, J. M. Plitzko, and R. Hillenbrand, "Contrast and scattering efficiency of scattering-type near-field optical probes," Appl. Phys. Lett. 85, 4466-4468 (2004).
    [CrossRef]
  20. U. C. Fischer, Latex Projections Patterns, in Procedures in Scanning Probe Microscopy, R.J. Colton, et al., Editors (John Wiley & Sons, 1998) p. 10-11.
  21. R. Hillenbrand and F. Keilmann, "Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by back-scattering near-field optical microscopy," Appl. Phys. Lett. 80, 25 (2002).
    [CrossRef]
  22. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, "Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm," Phys. Med. Biol. 48, 4165-4172 (2003).
    [CrossRef]
  23. H. R. Philipp, "The infrared optical properties of SiO2 and SiO2 layers on Silicon," J. Appl. Phys. 50, 1053-1057 (1979).
    [CrossRef]
  24. B. B. Akhremitchev, Y. Sun, L. Stebounova, and G. C. Walker, "Monolayer-sensitive Infrared Imaging of DNA Stripes using apertureless Near-field Microscopy," Langmuir 18, 5325-5328 (2002).
    [CrossRef]
  25. N. Anderson, L. Novotny, and A. Hartschuh. "Localized Raman spectroscopy and imaging on the nanometer scale using near-field Raman microscopy", presented at The 8th International Conference on Near-field Nano-Optics & Related Techniques (NFO-8), Seoul, Korea, 5-9 Sept. 2004.

Appl. Phys. Lett.

T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer identification by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85, 5064-5066 (2004).
[CrossRef]

M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering," Appl. Phys. Lett. 83, 5089-5091 (2003).
[CrossRef]

D. Haefliger, J. M. Plitzko, and R. Hillenbrand, "Contrast and scattering efficiency of scattering-type near-field optical probes," Appl. Phys. Lett. 85, 4466-4468 (2004).
[CrossRef]

R. Hillenbrand and F. Keilmann, "Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by back-scattering near-field optical microscopy," Appl. Phys. Lett. 80, 25 (2002).
[CrossRef]

Eur. Phys. J. Appl. Phys.

G. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J. Appl. Phys. 5, 269-275 (1999).
[CrossRef]

J. Appl. Phys.

H. R. Philipp, "The infrared optical properties of SiO2 and SiO2 layers on Silicon," J. Appl. Phys. 50, 1053-1057 (1979).
[CrossRef]

J. Chem. Phys.

N. Hayazawa, Y. Inouye, Y. Sekkat, and S. Kawata, "Near-field Raman imaging of organic molecules by an apertureless metallic probe scanning optical microscope," J. Chem. Phys. 117, 1296-1301 (2002).
[CrossRef]

J. Microscopy

T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microscopy 210, 311-314 (2003).
[CrossRef]

Langmuir

B. B. Akhremitchev, Y. Sun, L. Stebounova, and G. C. Walker, "Monolayer-sensitive Infrared Imaging of DNA Stripes using apertureless Near-field Microscopy," Langmuir 18, 5325-5328 (2002).
[CrossRef]

Nature

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometer scale," Nature 418, 159-162 (2002).
[CrossRef] [PubMed]

B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
[CrossRef]

Nature Mat.

N. Ocelic and R. Hillenbrand, "Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation," Nature Mat. 3, 606-609 (2004).
[CrossRef]

NFO

N. Anderson, L. Novotny, and A. Hartschuh. "Localized Raman spectroscopy and imaging on the nanometer scale using near-field Raman microscopy", presented at The 8th International Conference on Near-field Nano-Optics & Related Techniques (NFO-8), Seoul, Korea, 5-9 Sept. 2004.

Opt. Lett.

Phil. Trans. R. Soc. Lond.

A. Hartschuh, M. Beversluis, A. Bouhelier, and L. Novotny, "Tip-enhanced optical spectroscopy," Phil. Trans. R. Soc. Lond. 362, 807-819 (2004).
[CrossRef]

F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Phil. Trans. R. Soc. Lond. 362, 787-805 (2004).
[CrossRef]

Phys. Med. Biol.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, "Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm," Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

Phys. Rev. Lett.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, "Tip-enhanced Fluorescence Microscopy at 10 nm resolution," Phys. Rev. Lett. 93, 180801-4 (2004).
[CrossRef] [PubMed]

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, "High resolution Imaging of Single Fluorescent molecules with the optical Near-field of a Metal Tip," Phys. Rev. Lett. 93, 200801-4 (2004).
[CrossRef] [PubMed]

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, "High-resolution near-field Raman microscopy of single-walled carbon nanotubes," Phys. Rev. Lett. 90, 095503-1 (2003).
[CrossRef] [PubMed]

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, "Scanning plasmon near-field microscopy," Phys. Rev. Lett. 68, 476-479 (1992).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
[CrossRef] [PubMed]

Science

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning interferometric apertureless microscopy: optical imaging at 10 Angstrom resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

Other

U. C. Fischer, Latex Projections Patterns, in Procedures in Scanning Probe Microscopy, R.J. Colton, et al., Editors (John Wiley & Sons, 1998) p. 10-11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Principle of subsurface imaging with scattering-type scanning near-field optical microscopy (s-SNOM). The oscillating (frequency Ω) tip is illuminated by a laser beam, and the backscattered light is recorded (red arrows). The near-fields confined by the tip probe a structure in a depth d underneath the sample’s surface.

Fig. 2.
Fig. 2.

Subsurface near-field imaging with visible light (λ= 633 nm) of a sample consisting of Au islands on a Si surface, partly covered by a PS strip, (a) topography, (b) optical amplitude s3, (c) and (d) line profiles extracted from images (a) and (b), illustrated with a sketch of the sample’s structure, (e) decay of the scattering amplitude s3 vs. vertical distance z from an Au surface.

Fig. 3.
Fig. 3.

Subsurface imaging with mid-infrared light (λ= 10.7 μm). (a) topography, (b) infrared amplitude s2 and (c) topography line plot (dotted line in (a)) of a sample partly covered with spin-coated PMMA. The polymer thickness changes from 62 nm on Si to 53 nm on Au islands. Note the logarithmic color scale in (b).

Fig. 4.
Fig. 4.

Subsurface near-field mid-infrared imaging (λ= 10.7 μm) of a Si sample covered with different SiO2 thicknesses of 0, 47, 80, and 134 nm in the regions A-D, respectively. (a) Topography, (b) sketch and topography lineplot extracted from (a), (c) infrared amplitude s2, (d) Approach curves of the infrared amplitude s2, vs. distance between tip and the Si substrate, taken along the dotted line in (c) on the three levels A-C. Values on contact are marked by a star.

Metrics