Abstract

opportunities for full field 2D amplitude and phase vibration analysis are presented. It is demonstrated that it is possible to simultaneously encode-decode 2D the amplitude and phase of harmonic mechanical vibrations. The process allows the determination of in plane and out of plane vibration components when the object is under a pure sinusoidal excitation. The principle is based on spatial multiplexing in digital Fresnel holography. Experimental results are presented in the case of an industrial application.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. U. Schnars, W. Jüptner, �??�??Direct recording of holograms by a CCD target and numerical reconstruction,�??�?? App. Opt. 33, 179-181 (1994).
    [CrossRef]
  2. L. Yu, M.K. Kim, �??�??Wavelength scanning digital interference holography for variable tomographic scanning,�??�?? Opt. Express 13, 5621-5627 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-15-5621">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-15-5621</a>.
    [CrossRef] [PubMed]
  3. M. Paturzo, P. Ferraro, S. Grilli, D. Alfieri, P. De Natale, M. de Angelis, A. Finizio, S. De Nicola, G. Pierattini, F. Caccavale, D. Callejo, A. Morbiato, �??�??On the origin of internal field in Lithium Niobate crystals directly observed by digital holography,�??�?? Opt. Express 13, 5416-5423 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-14-5416">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-14-5416</a>.
    [CrossRef] [PubMed]
  4. N. Demoli, I. Demoli, �??�??Dynamic modal characterization of musical instruments using digital holography,�??�?? Opt. Express 13, 4812-4817 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-4812">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-4812</a>.
    [CrossRef] [PubMed]
  5. B. Javidi, I. Moon, S. Yeom, E. Carapezza, �??�??Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,�??�?? Opt. Express 13, 4492-4506 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4492">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4492</a>.
    [CrossRef] [PubMed]
  6. N. Demoli, D. Vukicevic, M. Torzynski, �??�??Dynamic digital holographic interferometry with three wavelengths,�??�?? Opt. Express 11, 767-774 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-767">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-767</a>.
    [CrossRef] [PubMed]
  7. I. Yamaguchi, J. Kato, S. Ohta, �??�??Surface shape measurement by phase shifting digital holography,�??�?? Opt. Rev. 8, 85-89 (2001).
    [CrossRef]
  8. F. Dubois, L. Joannes, J.C. Legros, �??�??Improved three-dimensional imaging with a digital holographic microscope with a source of partial spatial coherence,�??�?? Appl. Opt. 38, 7085-7094 (1999).
    [CrossRef]
  9. P. Picart, J. Leval, D. Mounier, S. Gougeon, �??Time averaged digital holography,�?? Opt. Lett. 28, 1900-1902 (2003).
    [CrossRef] [PubMed]
  10. P. Picart, J. Leval, D. Mounier, S. Gougeon, �??Some opportunities for vibration analysis with time-averaging in digital Fresnel holography,�?? Appl. Opt. 44, 337-343 (2005).
    [CrossRef] [PubMed]
  11. J. Leval, P. Picart, J.-P. Boileau, J.-C. Pascal, �??Full field vibrometry with digital Fresnel holography,�?? Appl. Opt. 44, 5763-5772 (2005).
    [CrossRef] [PubMed]
  12. P. Picart, E. Moisson, D. Mounier, �??Twin sensitivity measurement by spatial multiplexing of digitally recorded holograms,�?? Appl. Opt. 42, 1947-1957 (2003).
    [CrossRef] [PubMed]
  13. P. Picart, B. Diouf, E. Lolive, J.-M. Berthelot, �??Investigation of fracture mechanisms in resin concrete using spatially multiplexed digital Fresnel holograms,�?? Opt. Eng. 43, 1169-1176 (2004).
    [CrossRef]
  14. Technical data sheet available for example on <a href= "http://www.polytec.com">http://www.polytec.com</a>.

App. Opt. (1)

U. Schnars, W. Jüptner, �??�??Direct recording of holograms by a CCD target and numerical reconstruction,�??�?? App. Opt. 33, 179-181 (1994).
[CrossRef]

Appl. Opt. (4)

Opt. Eng. (1)

P. Picart, B. Diouf, E. Lolive, J.-M. Berthelot, �??Investigation of fracture mechanisms in resin concrete using spatially multiplexed digital Fresnel holograms,�?? Opt. Eng. 43, 1169-1176 (2004).
[CrossRef]

Opt. Express (5)

L. Yu, M.K. Kim, �??�??Wavelength scanning digital interference holography for variable tomographic scanning,�??�?? Opt. Express 13, 5621-5627 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-15-5621">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-15-5621</a>.
[CrossRef] [PubMed]

M. Paturzo, P. Ferraro, S. Grilli, D. Alfieri, P. De Natale, M. de Angelis, A. Finizio, S. De Nicola, G. Pierattini, F. Caccavale, D. Callejo, A. Morbiato, �??�??On the origin of internal field in Lithium Niobate crystals directly observed by digital holography,�??�?? Opt. Express 13, 5416-5423 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-14-5416">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-14-5416</a>.
[CrossRef] [PubMed]

N. Demoli, I. Demoli, �??�??Dynamic modal characterization of musical instruments using digital holography,�??�?? Opt. Express 13, 4812-4817 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-4812">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-4812</a>.
[CrossRef] [PubMed]

B. Javidi, I. Moon, S. Yeom, E. Carapezza, �??�??Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,�??�?? Opt. Express 13, 4492-4506 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4492">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4492</a>.
[CrossRef] [PubMed]

N. Demoli, D. Vukicevic, M. Torzynski, �??�??Dynamic digital holographic interferometry with three wavelengths,�??�?? Opt. Express 11, 767-774 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-767">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-767</a>.
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Rev. (1)

I. Yamaguchi, J. Kato, S. Ohta, �??�??Surface shape measurement by phase shifting digital holography,�??�?? Opt. Rev. 8, 85-89 (2001).
[CrossRef]

Other (1)

Technical data sheet available for example on <a href= "http://www.polytec.com">http://www.polytec.com</a>.

Supplementary Material (9)

» Media 1: MPG (1064 KB)     
» Media 2: MPG (911 KB)     
» Media 3: MPG (1402 KB)     
» Media 4: MPG (1608 KB)     
» Media 5: MPG (1586 KB)     
» Media 6: MPG (1251 KB)     
» Media 7: MPG (1092 KB)     
» Media 8: MPG (1321 KB)     
» Media 9: MPG (811 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Experimental set-up for simultaneous 2D vibration analysis

Fig. 2.
Fig. 2.

Multiplexed holograms of the car joint piece

Fig. 3.
Fig. 3.

2D vibration amplitude and phase at a frequency of 680 Hz

Fig. 4.
Fig. 4.

Mean quadratic velocities extracted from the experimental results

Fig. 5.
Fig. 5.

1064 Ko Movie 1 - Kinetic representation of Fresnel for 2D vibration at 340Hz [Media 9]

Fig. 6.
Fig. 6.

912 Ko Movie 2 - Kinetic representation of Fresnel for 2D vibration at 430Hz

Fig. 7.
Fig. 7.

1403 Ko Movie 3 - Kinetic representation of Fresnel for 2D vibration at 460Hz

Fig. 8.
Fig. 8.

1609 Ko Movie 4 - Kinetic representation of Fresnel for 2D vibration at 680Hz

Fig. 9.
Fig. 9.

1586 Ko Movie 5 - Kinetic representation of Fresnel for 2D vibration at 730Hz

Fig. 10.
Fig. 10.

1251 Ko Movie 6 - Kinetic representation of Fresnel for 2D vibration at 880Hz

Fig. 11.
Fig. 11.

1093 Ko Movie 7 - Kinetic representation of Fresnel for 2D vibration at 900Hz

Fig. 12.
Fig. 12.

1321 Ko Movie 8 - Kinetic representation of Fresnel for 2D vibration at 930Hz

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

U ( t ) = u x sin ( ω 0 t + φ x ) i + u y sin ( ω 0 t + φ y ) j + u z sin ( ω 0 t + φ z ) k ,
A ( t ) = A 0 exp ( i ψ 0 ) exp [ 2 S . U ( t ) / λ ] ,
A R ( x , y , d 0 , t ) = i exp ( 2 i π d 0 / λ ) λ d 0 exp [ i π λ d 0 ( x 2 + y 2 ) ]
× k = 0 k = K 1 l = 0 l = L 1 H ( l p x , k p y , d 0 , t ) exp [ i π λ d 0 ( l 2 p x 2 + k 2 p y 2 ) ] exp [ 2 i π λ d 0 ( lx p x + ky p y ) ] .
A + 1 R ( x , y , d 0 , t ) MN λ 4 d 0 4 R * ( x , y ) exp [ iπλ d 0 ( u 0 2 + v 0 2 ) ]
× A 0 ( x , y ) exp [ i ψ 0 ( x , y ) ] exp [ 2 S . U ( t ) / λ ] * δ ( x λ u 0 d 0 , y λ v 0 d 0 ) .
ψ J i = ψ 0 ± Δ φ x sin ( θ ) sin ( ω 0 t j + φ x ) Δ φ z [ 1 + cos ( θ ) ] sin ( ω 0 t j + φ z ) ,
Δ φ A = 1 2 [ Δ ψ 13 _ A ] 2 + [ Δ ψ 23 _ A + Δ ψ 21 _ A ] 2 ,
φ A = arctan [ Δ ψ 13 _ A Δ ψ 23 _ A + Δ ψ 21 _ A ] ,
v A 2 = ω 0 2 πS s 0 T 0 v A ( x , y , t ) 2 dtdxdy ,
v z ( x , y , t ) = λ ω 0 4 π ( 1 + cos θ ) Δ φ z ( x , y ) cos ( ω 0 + φ z ) ,
v z ( x , y ,t ) = λ ω 0 4 π sin ( θ ) Δ φ x ( x , y ) cos ( ω 0 t + φ x ) .

Metrics