Abstract

Surface-plasmon coupled emission (SPCE) has emerged as a new and potentially powerful tool for highly sensitive fluorescence detection. In the case of SPCE, the fluorescence is collected through a semi-transparent thin metal film deposited on glass. We present a theoretical analysis of SPCE, studying the potential enhancement of the fluorescence collection efficiency, brightness, quantum-yield, and photostability. The results are compared with fluorescence detection on a pure glass surface. It is shown that SPCE does not lead to any improvement, but that the metal film actually reduces the sensitivity of fluorescence detection.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Hirschfeld �??Total reflection fluorescence,�?? Can. Spectroscopy 10, 128 (1965).
  2. D. Axelrod, T. P. Burghardt, N. L. Thompson �??Total internal reflection fluorescence,�?? Ann. Rev. Biophys. Bioeng. 13, 124-268 (1984).
    [CrossRef]
  3. T. Ruckstuhl, J. Enderlein, S. Jung, S. Seeger, �??Forbidden light detection from single molecules,�?? Anal. Chem. 72, 2117-2123 (2000).
    [CrossRef] [PubMed]
  4. T. Ruckstuhl, M. Rankl, S. Seeger, "Highly sensitive biosensing using a supercritical angle fluorescence (SAF) instrument" Biosens. Bioelectron. 18, 1193-99 (2003).
    [CrossRef] [PubMed]
  5. A. Krieg, S. Laib, T. Ruckstuhl, S. Seeger, "Fast detection of single nucleotide polymorphisms (SNPs) by primer elongation using supercritical angle fluorescence," ChemBioChem 4, 1680-1685 (2004).
    [CrossRef]
  6. T. Liebermann and W. Knoll �??Surface-plasmon field-enhanced fluorescence spectroscopy,�?? Colloids Surf. A 171, 115-130 (2000).
    [CrossRef]
  7. F. Yu, D. F. Yao, W. Knoll �??Surface-plasmon field-enhanced fluorescence spectroscopy studies of the interaction of the interaction of an antibody and its surface-coupled antigen,�?? Anal. Chem. 75, 2610-2617 (2003).
    [CrossRef] [PubMed]
  8. G. Stengel and W. Knoll �??Surface plasmon field-enhanced fluorescence spectroscopy," Nucleic Acids Res. 33, e69 (2005).
    [CrossRef] [PubMed]
  9. J. R. Lakowicz �??Radiative decay engineering 3. Surface plasmon-coupled directional emission," Anal. Biochem. 324, 153-169 (2004).
  10. I. Gryczynski, J. Malicka, Z. Gryczynski, J. R. Lakowicz �??Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,�?? Anal. Biochem. 324, 170-182 (2004).
    [CrossRef]
  11. E. Matveeva, Z. Gryczynski, I. Gryczynski, J. Malicka, J. R. Lakowicz �??Myoglobin immunoassay utilizing directional surface plasmon-coupled emission,�?? Anal. Chem. 76, 6287-6292 (2004).
    [CrossRef] [PubMed]
  12. W. H. Weber and C. F. Eagen �??Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,�?? Opt. Lett. 4, 236-238 (1979).
    [CrossRef] [PubMed]
  13. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, M. Kreiter �??Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,�?? Phys. Rev. Lett. 94, 023005 (2005).
    [CrossRef] [PubMed]
  14. N. Calander �??Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures,�?? Anal. Chem. 76, 2168-2173 (2004).
    [CrossRef] [PubMed]
  15. A. Sommerfeld, Partial differential equations in physics (Academic Press, 1949).
  16. G.W. Ford and W.H. Weber �??Electromagnetic interactions of molecules with metal surfaces�?? Phys. Rep. 113, 195-287 (1984).
    [CrossRef]
  17. J. Enderlein �??Fluorescence detection of single molecules near a solution/glass interface �?? an electrodynamic analysis," Chem. Phys. Lett. 308, 263-266 (1999).
    [CrossRef]
  18. J. Enderlein �??Single molecule fluorescence near a metal layer," Chem. Phys. 247, 1-9 (1999).
    [CrossRef]
  19. J. Enderlein �??Theoretical study of detecting a dipole emitter through an objective with high numerical aperture,�?? Opt. Lett. 25, 634-636 (2000).
    [CrossRef]
  20. J. Enderlein �??A theoretical investigation of single molecule fluorescence detection on thin metallic layers,�?? Biophys. J. 78, 2151-2158 (2000).
    [CrossRef] [PubMed]
  21. C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski �??Directional surface plasmon coupled emission,�?? J. Fluoresc. 14, 119-123 (2004).
    [CrossRef] [PubMed]
  22. J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski �??Directional surface plasmon-coupled emission: a new method for high sensitivity detection,�?? Biophys. Biochem. Res. Comm. 307, 435-439 (2003).
    [CrossRef]
  23. J. Enderlein, T. Ruckstuhl, S. Seeger �??Highly efficient optical detection of surface-generated fluorescence," Appl. Opt. 38, 724-732 (1999).
    [CrossRef]
  24. T. Ruckstuhl and S. Seeger WO 009946596 (1999)
  25. E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, �??Multi-wavelength immunoassays using surface plasmon-coupled emission,�?? Biophys. Biochem. Res. Comm. 313, 721-726 (2004).
    [CrossRef]

Anal. Biochem. (2)

J. R. Lakowicz �??Radiative decay engineering 3. Surface plasmon-coupled directional emission," Anal. Biochem. 324, 153-169 (2004).

I. Gryczynski, J. Malicka, Z. Gryczynski, J. R. Lakowicz �??Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,�?? Anal. Biochem. 324, 170-182 (2004).
[CrossRef]

Anal. Chem. (4)

E. Matveeva, Z. Gryczynski, I. Gryczynski, J. Malicka, J. R. Lakowicz �??Myoglobin immunoassay utilizing directional surface plasmon-coupled emission,�?? Anal. Chem. 76, 6287-6292 (2004).
[CrossRef] [PubMed]

N. Calander �??Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures,�?? Anal. Chem. 76, 2168-2173 (2004).
[CrossRef] [PubMed]

T. Ruckstuhl, J. Enderlein, S. Jung, S. Seeger, �??Forbidden light detection from single molecules,�?? Anal. Chem. 72, 2117-2123 (2000).
[CrossRef] [PubMed]

F. Yu, D. F. Yao, W. Knoll �??Surface-plasmon field-enhanced fluorescence spectroscopy studies of the interaction of the interaction of an antibody and its surface-coupled antigen,�?? Anal. Chem. 75, 2610-2617 (2003).
[CrossRef] [PubMed]

Ann. Rev. Biophys. Bioeng. (1)

D. Axelrod, T. P. Burghardt, N. L. Thompson �??Total internal reflection fluorescence,�?? Ann. Rev. Biophys. Bioeng. 13, 124-268 (1984).
[CrossRef]

Appl. Opt. (1)

Biophys. Biochem. Res. Comm. (2)

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski �??Directional surface plasmon-coupled emission: a new method for high sensitivity detection,�?? Biophys. Biochem. Res. Comm. 307, 435-439 (2003).
[CrossRef]

E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, �??Multi-wavelength immunoassays using surface plasmon-coupled emission,�?? Biophys. Biochem. Res. Comm. 313, 721-726 (2004).
[CrossRef]

Biophys. J. (1)

J. Enderlein �??A theoretical investigation of single molecule fluorescence detection on thin metallic layers,�?? Biophys. J. 78, 2151-2158 (2000).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

T. Ruckstuhl, M. Rankl, S. Seeger, "Highly sensitive biosensing using a supercritical angle fluorescence (SAF) instrument" Biosens. Bioelectron. 18, 1193-99 (2003).
[CrossRef] [PubMed]

Can. Spectroscopy (1)

T. Hirschfeld �??Total reflection fluorescence,�?? Can. Spectroscopy 10, 128 (1965).

Chem. Phys. (1)

J. Enderlein �??Single molecule fluorescence near a metal layer," Chem. Phys. 247, 1-9 (1999).
[CrossRef]

Chem. Phys. Lett. (1)

J. Enderlein �??Fluorescence detection of single molecules near a solution/glass interface �?? an electrodynamic analysis," Chem. Phys. Lett. 308, 263-266 (1999).
[CrossRef]

ChemBioChem (1)

A. Krieg, S. Laib, T. Ruckstuhl, S. Seeger, "Fast detection of single nucleotide polymorphisms (SNPs) by primer elongation using supercritical angle fluorescence," ChemBioChem 4, 1680-1685 (2004).
[CrossRef]

Colloids Surf. A (1)

T. Liebermann and W. Knoll �??Surface-plasmon field-enhanced fluorescence spectroscopy,�?? Colloids Surf. A 171, 115-130 (2000).
[CrossRef]

J. Fluoresc. (1)

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski �??Directional surface plasmon coupled emission,�?? J. Fluoresc. 14, 119-123 (2004).
[CrossRef] [PubMed]

Nucleic Acids Res. (1)

G. Stengel and W. Knoll �??Surface plasmon field-enhanced fluorescence spectroscopy," Nucleic Acids Res. 33, e69 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

J. Enderlein �??Theoretical study of detecting a dipole emitter through an objective with high numerical aperture,�?? Opt. Lett. 25, 634-636 (2000).
[CrossRef]

W. H. Weber and C. F. Eagen �??Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,�?? Opt. Lett. 4, 236-238 (1979).
[CrossRef] [PubMed]

Phys. Rep. (1)

G.W. Ford and W.H. Weber �??Electromagnetic interactions of molecules with metal surfaces�?? Phys. Rep. 113, 195-287 (1984).
[CrossRef]

Phys. Rev. Lett. (1)

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, M. Kreiter �??Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,�?? Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Other (2)

A. Sommerfeld, Partial differential equations in physics (Academic Press, 1949).

T. Ruckstuhl and S. Seeger WO 009946596 (1999)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Setup of SPCE: An aqueous solution of fluorescing molecules is placed on top of a thin metal film deposited on glass. Fluorescence detection is usually done from the glass side. Fluorescence excitation can be performed either from the glass side by a plane wave with incidence angle close to the SP resonance angle, or from the water side with vertical plane wave illumination. A single molecule is depicted as a dipole emitter with a distance z from the metal surface and forming an angle β with the vertical (optical) axis. The angular distribution of radiation into glass is depicted as a red curve and is a function of angle θ. The critical angle θ cr of total internal reflection between glass and water is also shown.

Fig. 2.
Fig. 2.

Illustration of surface plasmon resonance at 532 nm (left panel) and 570 nm (right panel) wavelengths. Shown is the reflectivity of a plane wave incident from the glass side as a function of silver film thickness and incidence angle. For both wavelengths, there is a unique pair of thickness and angle values where reflectivity reaches an absolute minimum, i.e. maximum coupling of incident energy into the metal film.

Fig. 3.
Fig. 3.

Partition of energy of the total energy radiated by an emitting molecule as a function of the molecule’s distance from the surface. (A) Case of SPCE for a vertically (left) and horizontally (right) oriented molecule. Shown are the total emission into the glass half space, the water half space, and energy absorbed by and dissipated within the metal film. The dotted vertical lines define the distance values yielding maximum emission into the glass half space. For these distance values, the angular distributions of emission are shown by the insets. (B) Case of a molecule above a pure glass/water interface. Shown are the total emission into the glass half space, the water half space, and total emission into angles above the critical angle of TIR (SAF detection). The insets show the angular distributions of emission for molecules directly on the glass surface.

Fig. 4.
Fig. 4.

(A) Fluorescence lifetime for molecules with unity QY of fluorescence as a function of distance from the surface. Solid lines refer to a pure water/glass interface, shaded lines to the SPCE case. (B) Total emission into the glass half space for a vertically oriented dipole as a function of distance from the surface for three different values of QY. Solid lines refer to pure water/glass interface, shaded lines to SPCE. (C) Same as (B), but for horizontally oriented dipole.

Fig. 5.
Fig. 5.

(A) Average number of emitted photons until photobleaching as a function of distance from the surface for molecules with unity QY. (B) Maximum detectable fluorescence intensity when collecting over the whole glass half space. Lines (a) and (b) refer to SPCE, where (a) shows the result for plane wave excitation from the glass side at the incidence angle giving maximum electric field intensity on the metal surface, and (b) shows the result for perpendicular plane wave excitation from the water side. Lines (c) and (d) refer to a pure water/glass interface, where (c) shows the result for perpendicular plane wave excitation from the glass side, and (d) for plane wave excitation from the glass side with incidence angle just below the critical angle of TIR.

Fig. 6.
Fig. 6.

Partition of emitted energy between radiation into glass half space, into water half space, and energy absorbed by and dissipated within the metal film for the glass/metal/waveguide/water system. Functional dependence on metal film and waveguide layer thickness is shown. The refractive index of the dielectric layer is 2, the position of the emitting molecules is directly on the surface of the waveguide. The top panel shows the results for vertically oriented dipoles, the bottom panel for horizontally oriented ones.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S w , g ( θ , ϕ , z , β ) = S w , g θ z cos 2 β + [ S w , g , c θ z cos 2 ϕ + S w , g , s θ z sin 2 ϕ ] sin 2 β ,
S total z β = S total ( z ) cos 2 β + S total ( z ) sin 2 β .
I g , ( z ) = 2 π θ 0 π 2 d θ sin θ S g , ( θ , ϕ , z ) S total , ( z ) ,
I diss , ( z ) = S total , ( z ) 2 π 0 π 2 d θ sin θ [ S g , θ z + S w , θ z ] .
Q = Q 0 S total S 0 1 Q 0 + Q 0 S total S 0 ,
τ , z β = τ 0 S 0 S total , .
I g , z β Q = 2 π 0 π 2 d θ sin θ S g , Q 0 ( 1 Q 0 ) S 0 + Q 0 S total , .
N g , ( z ) N 0 = 2 π S 0 θ 0 π 2 d θ sin θ S g , ,

Metrics