Abstract

A cavity stabilized, SESAM mode-locked Cr4+:YAG laser capable of generating sub-100 fs pulses has been developed. Locking the 130-MHz pulse repetition frequency to that of a hydrogen maser-referenced frequency synthesizer provides a 30-nm wide frequency comb for the 1530-nm wavelength region. In conjunction with a pair of acetylene stabilized, external cavity diode lasers, this laser provides a high precision measurement tool for the determination of acetylene transition frequencies.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. N. Eckstein, A. I. Ferguson and T. W. Hänsch, �??High-resolution two-photon spectroscopy with picosecond light pulses,�?? Phys. Rev. Lett. 40, 847-850 (1978).
    [CrossRef]
  2. Th. Udem, J. Reichert, R. Holzwarth and T. W. Hänsch, �??Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,�?? Phys. Rev. Lett. 82, 3568-3571 (1999).
    [CrossRef]
  3. J. Reichert, R. Holzwarth, Th. Udem and T. W. Hänsch, �??Measuring the frequency of light with mode-locked lasers,�?? Opt. Comm. 172, 59-68 (1999).
    [CrossRef]
  4. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, �??Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,�?? Appl. Phys. B 69, 327-332 (1999).
    [CrossRef]
  5. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, �??Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,�?? Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  6. J. Rauschenberger, T. M. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff, �??Control of the frequency comb from a mode-locked Erbium-doped fiber laser,�?? Optics Express 10, 1404-1410 (2002). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-24-1404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-24-1404</a>
    [PubMed]
  7. K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury, and S. A. Diddams, �??Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser,�?? Opt. Lett. 30, 932-934 (2005).
    [CrossRef] [PubMed]
  8. A. Czajkowski, A. A. Madej, and P. Dubé, �??Development and study of a 1.5 µm optical frequency standard referenced to the P(16) saturated absorption line in the (v1 + v3) overtone band of 13C2H2,�?? Opt. Comm. 234, 259-268 (2004).
    [CrossRef]
  9. A. Czajkowski, J. E. Bernard, A. A. Madej and R. S. Windeler, �??Absolute frequency measurement of acetylene transitions in the region of 1540 nm,�?? Appl. Phys. B 79, 45-50 (2004).
    [CrossRef]
  10. T. J. Quinn, �??Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),�?? Metrologia 40, 103-133 (2003).
    [CrossRef]
  11. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek and J. Aus der Au, �??Semiconductor saturable absorber mirrors (SESAM�??s) for femtosecond to nanosecond pulse generation in solid-state lasers,�?? IEEE Journal of Selected Topics in Quantum Electron. 2, 435-453 (1996).
    [CrossRef]
  12. S. Tsuda, W.H. Knox, S.T. Cundiff, W.Y. Jan and J.E. Cunningham, �??Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,�?? IEEE Journal of Selected Topics in Quantum Electron. 2, 454-464 (1996).
    [CrossRef]
  13. S. Naumov, E. Sorokin, V. L. Kalashnikov, G. Tempea, and I. T. Sorokina, �??Self-starting five optical cycle pulse generation in Cr4+:YAG laser,�?? Appl. Phys. B 76, 1-11 (2003).
    [CrossRef]
  14. J. Alcock, P. Poole and B.T. Sullivan, �??Hybrid semiconductor saturable absorber mirrors as passive mode-locking elements,�?? Proc. SPIE TD01, 12-14 (2002).
  15. M.J. Lederer, B. Luther-Davies, H.H. Tan and C. Jagadish, �??GaAs based anti-resonant Fabry-Perot saturable absorber fabricated by metal organic vapor phase epitaxy and ion implantation,�?? Appl. Phys. Lett. 70, 3428-3430 (1997).
    [CrossRef]
  16. A. Onae, K. Okumura, F.-L. Hong, H. Matsumoto, and K. Nakagawa, �??Accurate frequency atlas of 1.5 µm band of acetylene measured by a mode-locked laser,�?? Digest of the Conference on Precision Electromagnetic Measurements, pp. 666-667 (IEEE Press, Piscataway NJ, 2004).
    [CrossRef]
  17. C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill and W. R. C. Rowley, �??High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region,�?? Appl. Phys. B 80, 977-983 (2005).
    [CrossRef]
  18. A. A. Madej, J. E. Bernard, A. J. Alcock, A. Czajkowski and S. Chepurov are preparing a manuscript to be called, �??Accurate absolute frequencies of the v1+v3 band of 13C2H2 determined using an infrared mode-locked Cr:YAG laser frequency comb.�??

Appl. Phys. B (4)

A. Czajkowski, J. E. Bernard, A. A. Madej and R. S. Windeler, �??Absolute frequency measurement of acetylene transitions in the region of 1540 nm,�?? Appl. Phys. B 79, 45-50 (2004).
[CrossRef]

S. Naumov, E. Sorokin, V. L. Kalashnikov, G. Tempea, and I. T. Sorokina, �??Self-starting five optical cycle pulse generation in Cr4+:YAG laser,�?? Appl. Phys. B 76, 1-11 (2003).
[CrossRef]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill and W. R. C. Rowley, �??High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region,�?? Appl. Phys. B 80, 977-983 (2005).
[CrossRef]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, �??Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,�?? Appl. Phys. B 69, 327-332 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

M.J. Lederer, B. Luther-Davies, H.H. Tan and C. Jagadish, �??GaAs based anti-resonant Fabry-Perot saturable absorber fabricated by metal organic vapor phase epitaxy and ion implantation,�?? Appl. Phys. Lett. 70, 3428-3430 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek and J. Aus der Au, �??Semiconductor saturable absorber mirrors (SESAM�??s) for femtosecond to nanosecond pulse generation in solid-state lasers,�?? IEEE Journal of Selected Topics in Quantum Electron. 2, 435-453 (1996).
[CrossRef]

J. Sel. Top. Quantum Electron. (1)

S. Tsuda, W.H. Knox, S.T. Cundiff, W.Y. Jan and J.E. Cunningham, �??Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,�?? IEEE Journal of Selected Topics in Quantum Electron. 2, 454-464 (1996).
[CrossRef]

Metrologia (1)

T. J. Quinn, �??Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),�?? Metrologia 40, 103-133 (2003).
[CrossRef]

Opt. Comm. (2)

A. Czajkowski, A. A. Madej, and P. Dubé, �??Development and study of a 1.5 µm optical frequency standard referenced to the P(16) saturated absorption line in the (v1 + v3) overtone band of 13C2H2,�?? Opt. Comm. 234, 259-268 (2004).
[CrossRef]

J. Reichert, R. Holzwarth, Th. Udem and T. W. Hänsch, �??Measuring the frequency of light with mode-locked lasers,�?? Opt. Comm. 172, 59-68 (1999).
[CrossRef]

Opt. Lett. (1)

Optics Express (1)

J. Rauschenberger, T. M. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff, �??Control of the frequency comb from a mode-locked Erbium-doped fiber laser,�?? Optics Express 10, 1404-1410 (2002). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-24-1404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-24-1404</a>
[PubMed]

Phys. Rev. Lett. (2)

J. N. Eckstein, A. I. Ferguson and T. W. Hänsch, �??High-resolution two-photon spectroscopy with picosecond light pulses,�?? Phys. Rev. Lett. 40, 847-850 (1978).
[CrossRef]

Th. Udem, J. Reichert, R. Holzwarth and T. W. Hänsch, �??Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,�?? Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

Proc. SPIE (1)

J. Alcock, P. Poole and B.T. Sullivan, �??Hybrid semiconductor saturable absorber mirrors as passive mode-locking elements,�?? Proc. SPIE TD01, 12-14 (2002).

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, �??Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,�?? Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Other (2)

A. A. Madej, J. E. Bernard, A. J. Alcock, A. Czajkowski and S. Chepurov are preparing a manuscript to be called, �??Accurate absolute frequencies of the v1+v3 band of 13C2H2 determined using an infrared mode-locked Cr:YAG laser frequency comb.�??

A. Onae, K. Okumura, F.-L. Hong, H. Matsumoto, and K. Nakagawa, �??Accurate frequency atlas of 1.5 µm band of acetylene measured by a mode-locked laser,�?? Digest of the Conference on Precision Electromagnetic Measurements, pp. 666-667 (IEEE Press, Piscataway NJ, 2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the cavity stabilized Cr4+:YAG laser system.CM, chirped mirror; PZT, piezo-electric translator

Fig. 2.
Fig. 2.

Autocorrelation traces and spectra for the Cr4+:YAG laser; (a,b) Kerr lens mode-locked operation (c,d) SESAM stabilized mode-locking. The indicated FWHM pulse durations are based on a sech2 pulse shape. For comparison the absorption spectrum for C2H2 is shown in (d).

Fig. 3.
Fig. 3.

Structure of the hybrid SESAM device, (a) intermediate structure (b) final structure.

Fig. 4.
Fig. 4.

Dynamic response of the SESAM before (a) and after (b) ion implantation.

Fig. 5
Fig. 5

Schematic of the experimental setup used to measure the beats between the Cr:YAG comb and the radiation from two acetylene stabilized external cavity diode lasers.

Tables (1)

Tables Icon

Table 1. Summary of measured frequency intervals using the Cr:YAG frequency comb for selected 13C2H2 reference lines relative to a standard laser stabilized to the P(16) line. Also shown is the determined absolute frequency of each line. The results are compared with absolute Ti:Sapphire comb measurements (in parentheses) of the same reference lines as described in Ref. [9].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δf = ( m n ) f rep ± f t

Metrics