Abstract

We demonstrate a new type of laser composed of an array of coupled photonic crystal nanocavities that enables high differential quantum efficiency and output power, together with a low threshold power comparable to those of single photonic crystal cavity lasers. In our experiment, the laser efficiency increases faster than the lasing threshold with an increase in the number of coupled cavities. We observe a single mode lasing and measure the output powers that are two orders of magnitude higher than in single nanocavity lasers. Finally, we study the laser behavior theoretically and show that the benefits resulting from the coupling of cavities are due to strong cavity effects such as the enhanced spontaneous emission rate.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J.L. Jewell, J. P. Harbison, A. Scherer, Y.H. Lee, and L.T. Florez, �??Vertical-cavity surface emitting lasers Design, growth, fabrication, characterization,�?? IEEE J. Quantum Electron. 27, 1332-1346 (1991)
    [CrossRef]
  2. K. L. Lear, et. al. �??Small and large signal modulation of 850 nm oxide-confined vertical cavity surface emitting lasers�??, Advances in Vertical Cavity Surface Emitting Lasers in series OSA Trends in Optics and Photonics 15, 69-74 (1997)
  3. E.Yablonovitch, �??Inhibited Spontaneous Emission in Solid-State Physics and Electronics,�?? Phys. Rev. Lett 58, 2059-2062 (1987)
    [CrossRef] [PubMed]
  4. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987)
    [CrossRef] [PubMed]
  5. Purcell, �??Spontaneous emission Probabilities at Radio Frequencies,�?? Phys. Rev. 69, 681 (1946)
  6. O. Painter, R.K. Lee, A. Scherer, A. Yariv, J. D. O�??Brien, P.D. Dapkus, and I. Kim, �??Two-Dimensional Photonic Band-Gap Defect Mode Laser,�?? Science 284, 1819-1821 (1999)
    [CrossRef] [PubMed]
  7. M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, �??Low-threshold photonic crystal laser,�?? Appl. Phys. Lett. 81, 2680-2682 (2002)
    [CrossRef]
  8. H. G. Park, S.H. Kim, S.H. Kwon, Y.G. Ju, J.K. Yang, J.H. Baek, S.B. Kim, and Y.H. Lee, �??Electrically Driven Single-Cell Photonic Crystal Laser,�?? Science 305, 1444-14447 (2004)
    [CrossRef] [PubMed]
  9. T. Yoshie, M. Loncar, A. Scherer, and Y. Qui, �??High Frequency Oscillation in Photonic Crystal nanolasers,�?? Appl. Phys. Lett. 84, 3543-3545 (2004)
    [CrossRef]
  10. M. Meier, A. Mekis, A. Dobabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, �??Laser action from two-dimensional distributed feedback in photonic crystals,�?? Appl. Phys. Lett. 74, 7-9, (1999)
    [CrossRef]
  11. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, �??Polarization Mode Control of Two- Dimensional Photonic Crystal Laser by Unit Cell Structure Design,�?? Science 293, 1123-1125 (2001)
    [CrossRef] [PubMed]
  12. C. Monat, C. Seassal, X. Letartre, et. al. �??InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser,�?? Appl. Phys. Lett. 81, 5102-5104 (2002)
    [CrossRef]
  13. M. Imada, S. Noda, A. Chutinan, and T. Tokuda, �??Coherent two-dimensional lasing action in surfaceemitting laser with triangular-lattice photonic crystal structure,�?? Appl. Phys. Lett. 75, 316-318 (1999)
    [CrossRef]
  14. H. Altug, and J. Vuckovic, �??Two-dimensional coupled photonic crystal resonator arrays,�?? Appl. Phys. Lett. 84, 161-163 (2004)
    [CrossRef]
  15. D. G. Deppe, J. P. van der Ziel, N. Chand, G. J. Zydzik, and S. N. G. Chu, �??Phase-coupled two-dimensional AlxGa1�??xAs-GaAs vertical-cavity surface-emitting laser array,�?? Appl. Phys. Lett. 56, 2089-2091 (1990)
    [CrossRef]
  16. M. Orenstein, E. Kapon, N. G. Stoofel, J. P. Harbison, J. Wullert, �??Two-dimensional phase-locked arrays of vertical-cavity semiconductor lasers by mirror reflectivity modulation,�?? Appl. Phys. Lett. 58, 804-806 (1991)
    [CrossRef]
  17. M. E. Warren, P.L. Gourley, G. R. Hadley, G. A Vawter, T. M. Brennan, B. E. Hammons, K. L. Lear, �??Onaxis far-field emission from two-dimensional phase-locked vertical cavity surface-emitting laser arrays with an integrated phase-corrector,�?? Appl. Phys. Lett., 61, 1484-1486 (1992)
    [CrossRef]
  18. J. J. Raftery, A.J. Danner, J. C. Lee, K. D. Choquette, �??Coherent coupling of two-dimensional arrays of defect cavities in photonic crystal vertical cavity surface-emitting lasers,�?? Appl. Phys. Lett. 86, 201104- (2005)
    [CrossRef]
  19. H. Altug, J. Vuckovic, �??Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,�?? Appl. Phys. Lett. 86, 111102 (2005)
    [CrossRef]
  20. H. Altug, J. Vuckovic, �??Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays,�?? Optics Lett. 30, 982-984 (2005)
    [CrossRef]
  21. A. Imamoglu, Y. Yamamoto, Mesoscopic Quantum Optics, New York: Wiley, 1999
  22. L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, New York: Wiley, 1995
  23. A. Xing, M. Davanco, D. J. Blumenthal, E. Hu, �??Fabrication of InP-based photonic crystal membrane,�?? J. Vacuum Science B, 22 70-73 (2004)
    [CrossRef]
  24. J.R. Cao, P.T. Lee, S.J. Choi, R. Shafiiha, S.J. Choi, J. D. O,Brien, P. D. Dapkus, �??Nanofabrication of photonic crystal membrane lasers,�?? J. Vacuum Science B, 20, 618-621 (2002)
    [CrossRef]
  25. T. Baba, �??Photonic crystals and microdisk cavities based on GaInAsP-InP system,�?? IEEE J. Select. Topics Quantum Electron., 3, 808-811 (1997)
    [CrossRef]
  26. T. D. Happ, M. Kamp, A. Forchel, J. Gentner, L. Goldstein, �??Two-dimensioanl photonic crystal coupleddefect laser diode,�?? App. Phys. Lett. 82, 4 (2003)
    [CrossRef]
  27. A. Nakagawa, S. Ishii, T. Baba, �??Photonic molecule laser composed of GaInAsP microdisks,�?? Appl. Phys. Lett. 86, 041112 (2005)
    [CrossRef]

App. Phys. Lett.

T. D. Happ, M. Kamp, A. Forchel, J. Gentner, L. Goldstein, �??Two-dimensioanl photonic crystal coupleddefect laser diode,�?? App. Phys. Lett. 82, 4 (2003)
[CrossRef]

Appl. Phys. Lett.

A. Nakagawa, S. Ishii, T. Baba, �??Photonic molecule laser composed of GaInAsP microdisks,�?? Appl. Phys. Lett. 86, 041112 (2005)
[CrossRef]

T. Yoshie, M. Loncar, A. Scherer, and Y. Qui, �??High Frequency Oscillation in Photonic Crystal nanolasers,�?? Appl. Phys. Lett. 84, 3543-3545 (2004)
[CrossRef]

M. Meier, A. Mekis, A. Dobabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, �??Laser action from two-dimensional distributed feedback in photonic crystals,�?? Appl. Phys. Lett. 74, 7-9, (1999)
[CrossRef]

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, �??Low-threshold photonic crystal laser,�?? Appl. Phys. Lett. 81, 2680-2682 (2002)
[CrossRef]

C. Monat, C. Seassal, X. Letartre, et. al. �??InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser,�?? Appl. Phys. Lett. 81, 5102-5104 (2002)
[CrossRef]

M. Imada, S. Noda, A. Chutinan, and T. Tokuda, �??Coherent two-dimensional lasing action in surfaceemitting laser with triangular-lattice photonic crystal structure,�?? Appl. Phys. Lett. 75, 316-318 (1999)
[CrossRef]

H. Altug, and J. Vuckovic, �??Two-dimensional coupled photonic crystal resonator arrays,�?? Appl. Phys. Lett. 84, 161-163 (2004)
[CrossRef]

D. G. Deppe, J. P. van der Ziel, N. Chand, G. J. Zydzik, and S. N. G. Chu, �??Phase-coupled two-dimensional AlxGa1�??xAs-GaAs vertical-cavity surface-emitting laser array,�?? Appl. Phys. Lett. 56, 2089-2091 (1990)
[CrossRef]

M. Orenstein, E. Kapon, N. G. Stoofel, J. P. Harbison, J. Wullert, �??Two-dimensional phase-locked arrays of vertical-cavity semiconductor lasers by mirror reflectivity modulation,�?? Appl. Phys. Lett. 58, 804-806 (1991)
[CrossRef]

M. E. Warren, P.L. Gourley, G. R. Hadley, G. A Vawter, T. M. Brennan, B. E. Hammons, K. L. Lear, �??Onaxis far-field emission from two-dimensional phase-locked vertical cavity surface-emitting laser arrays with an integrated phase-corrector,�?? Appl. Phys. Lett., 61, 1484-1486 (1992)
[CrossRef]

J. J. Raftery, A.J. Danner, J. C. Lee, K. D. Choquette, �??Coherent coupling of two-dimensional arrays of defect cavities in photonic crystal vertical cavity surface-emitting lasers,�?? Appl. Phys. Lett. 86, 201104- (2005)
[CrossRef]

H. Altug, J. Vuckovic, �??Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,�?? Appl. Phys. Lett. 86, 111102 (2005)
[CrossRef]

IEEE J. Quantum Electron.

J.L. Jewell, J. P. Harbison, A. Scherer, Y.H. Lee, and L.T. Florez, �??Vertical-cavity surface emitting lasers Design, growth, fabrication, characterization,�?? IEEE J. Quantum Electron. 27, 1332-1346 (1991)
[CrossRef]

IEEE J. Select. Topics Quantum Electron.

T. Baba, �??Photonic crystals and microdisk cavities based on GaInAsP-InP system,�?? IEEE J. Select. Topics Quantum Electron., 3, 808-811 (1997)
[CrossRef]

J. Vacuum Science B

J.R. Cao, P.T. Lee, S.J. Choi, R. Shafiiha, S.J. Choi, J. D. O,Brien, P. D. Dapkus, �??Nanofabrication of photonic crystal membrane lasers,�?? J. Vacuum Science B, 20, 618-621 (2002)
[CrossRef]

J. Vacuum Science B,

A. Xing, M. Davanco, D. J. Blumenthal, E. Hu, �??Fabrication of InP-based photonic crystal membrane,�?? J. Vacuum Science B, 22 70-73 (2004)
[CrossRef]

Optics Lett.

H. Altug, J. Vuckovic, �??Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays,�?? Optics Lett. 30, 982-984 (2005)
[CrossRef]

OSA TOPS Series

K. L. Lear, et. al. �??Small and large signal modulation of 850 nm oxide-confined vertical cavity surface emitting lasers�??, Advances in Vertical Cavity Surface Emitting Lasers in series OSA Trends in Optics and Photonics 15, 69-74 (1997)

Phys. Rev.

Purcell, �??Spontaneous emission Probabilities at Radio Frequencies,�?? Phys. Rev. 69, 681 (1946)

Phys. Rev. Lett

E.Yablonovitch, �??Inhibited Spontaneous Emission in Solid-State Physics and Electronics,�?? Phys. Rev. Lett 58, 2059-2062 (1987)
[CrossRef] [PubMed]

Phys. Rev. Lett.

S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987)
[CrossRef] [PubMed]

Science

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J. D. O�??Brien, P.D. Dapkus, and I. Kim, �??Two-Dimensional Photonic Band-Gap Defect Mode Laser,�?? Science 284, 1819-1821 (1999)
[CrossRef] [PubMed]

H. G. Park, S.H. Kim, S.H. Kwon, Y.G. Ju, J.K. Yang, J.H. Baek, S.B. Kim, and Y.H. Lee, �??Electrically Driven Single-Cell Photonic Crystal Laser,�?? Science 305, 1444-14447 (2004)
[CrossRef] [PubMed]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, �??Polarization Mode Control of Two- Dimensional Photonic Crystal Laser by Unit Cell Structure Design,�?? Science 293, 1123-1125 (2001)
[CrossRef] [PubMed]

Other

A. Imamoglu, Y. Yamamoto, Mesoscopic Quantum Optics, New York: Wiley, 1999

L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, New York: Wiley, 1995

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) SEM pictures of a fabricated single PC cavity laser and a coupled PC cavity array laser (b) Simulated electric field amplitude of the coupled cavity array quadrupole mode at the Γ-point in the middle of the slab.

Fig. 2.
Fig. 2.

(a) Spectrum of the coupled cavity array laser with a peak at 1534nm. The PC hole radius in this structure is about 192nm. The inset on the left shows the zoomed-in portion of the spectrum fitted with a Lorentzian (green dashed curve) of 0.23nm linewidth. The inset on the right shows the QW photoluminescence from unprocessed wafer (QWs shown on the SEM image).

Fig. 3.
Fig. 3.

(a) The IR-camera image (left) and the simulated time-averaged Poynting vector in the vertical direction (right) of the lasing mode for a single cavity laser. The size of the structure is indicated by the dashed square. (b) The same for a coupled cavity array laser.

Fig. 4.
Fig. 4.

LL-curves of the single PC cavity and the coupled PC cavity array laser. The inset shows a magnified curve for the single PC cavity

Fig. 5
Fig. 5

Output power as a function of the input pump power and the number of coupled cavities in the array, analyzed using rate equations and our experimental conditions (parameters given in Table 2). Single cavity results are shown in red and coupled cavity array laser results in blue. Coupled cavity laser has 10 times larger Va than single cavity laser, while the mode volume Vmode increases relative to that of a single cavity laser by a factor of 10 (diamond), 40 (circle) and 70 (square). By comparing theoretical analysis shown here with our experimental results shown in Fig. 4, we conclude that majority of 81 PC cavities in the array are lasing together in our laser.

Tables (2)

Tables Icon

Table1. Averaged values of the measured thresholds and DQEs of several single cavity and coupled cavity lasers and their ratios. Also shown are the β-factor ranges obtained by fitting laser rate equations to the measured LL-curves.

Tables Icon

Table 2. Typical parameters for InGaAsP-InP MQWs that are used in solving rate equation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L in , th = ħ ω p V a η [ 1 τ p V mod e β N t h τ r + N t h τ r ]
DQE = η ω l ω p V mod e V a 1 τ mirror 1 Γ G ( N t h )
Γ G ( N t h ) = 1 τ p β N t h V mod e τ r .
dN dt = η L in ħ ω p V a ( N τ r + N τ n r ) Γ G ( N ) P
dP dt = Γ G ( N ) P + β N τ r P τ p

Metrics