Abstract

Femtosecond nonlinear pulse compression of a wavelength-tunable, backward dark-optical-comb injection harmonic-mode-locked semiconductor optical amplifier based fiber laser (SOAFL) is demonstrated for the first time. Shortest mode-locked SOAFL pulsewidth of 15 ps at 1 GHz is generated, which can further be compressed to 180 fs after linear chirp compensation, nonlinear soliton compression, and birefringent filtering. A maximum pulsewidth compression ratio for the compressed eighth-order SOAFL soliton of up to 80 is reported. The pedestal-free eighth-order soliton can be obtained by injecting the amplified pulse with peak power of 51 W into a 107.5m-long single-mode fiber (SMF), providing a linewidth and time-bandwidth product of 13.8 nm and 0.31, respectively. The tolerance in SMF length is relatively large (100–300 m) for obtaining <200fs SOAFL pulsewidth at wavelength tuning range of 1530–1560 nm. By extending the repetition frequency of dark-optical-comb up to 10 GHz, the mode-locked SOAFL pulsewidth can be slightly shortened from 5.4 ps to 3.9 ps after dispersion compensating, and further to 560 fs after second-order soliton compression. The lasing linewidth, time-bandwidth product and pulsewidth suppressing ratio of the SOAFL soliton become 4.5 nm, 0.33, and 10, respectively.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. J. Guy, J. R. Taylor and K. Wakita, �??10 GHz 1.9ps actively modelocked fibre integrated ring laser at 1.3 µm,�?? Electron. Lett. 33, 1630 (1997).
    [CrossRef]
  2. D. M. Patrick, �??Modelocked ring laser using nonlinearity in a semiconductor laser amplifier,�?? Electron. Lett. 30, 43 (1994).
    [CrossRef]
  3. T. Papakyriakopoulos, K. Vlachos, A. Hatziefremidis, and H. Avramopoulos, �??20-GHz broadly tunable and stable mode-locked semiconductor amplifier fiber ring laser,�?? Opt. Lett. 24, 1209 (1999).
    [CrossRef]
  4. J. He and K. T. Chan, �??All-optical actively modelocked fibre ring laser based on cross-gain modulation in SOA,�?? Electron. Lett. 38, 1504 (2002).
    [CrossRef]
  5. K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, �??10�?30 GHz pulse train generation from semiconductor amplifier fiber ring laser,�?? IEEE Photonics Technol. Lett. 12, 25 (2000).
    [CrossRef]
  6. K. Tamura, J. Jacobson, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, �??77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,�?? Opt. Lett. 18, 1080 (1993).
    [CrossRef] [PubMed]
  7. N. V. Pedersen, K. B. Jakobsen, and M. Vaa, �??Mode-locked 1.5µm semiconductor optical amplifier fiber ring,�?? J. Lightwave Technol. 14, 833 (1996).
    [CrossRef]
  8. M. W. K. Mak, H. K. Tsang, and H. F. Liu, �??Wavelength-tunable 40 GHz pulse-train generation using 10 GHz gain-switched Fabry-Perot laser and semiconductor optical amplifier,�?? Electron. Lett. 36, 1580 (2000).
    [CrossRef]
  9. K. Vlahos, C. Bintjas, N. Pleros, and H. Avramopoulos, �??Ultrafast semiconductor-based fiber laser sources,�?? IEEE J. Sel. Top. Quantum Electro. 10, 147 (2004).
    [CrossRef]
  10. G.-Q. Xia, Z.-M. Wu, and G.-R. Lin, �??Rising and falling time of amplified picosecond optical pulses by semiconductor optical amplifiers,�?? Opt. Commun. 227, 165 (2003).
    [CrossRef]
  11. G.-R. Lin, Y.-S. Liao, and G.-Q. Xia, �??Dynamics of optical backward-injection-induced gain-depletion modulation and mode locking in semiconductor optical amplifier fiber lasers,�?? Opt. Express 12, 2017 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2017">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2017</a>
    [CrossRef] [PubMed]
  12. G.-R. Lin, I.-H. Chiu, and M.-C. Wu, �??1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression,�?? Opt. Express 13, 1008 (2005). <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-1008">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-1008</a>
    [CrossRef] [PubMed]
  13. D. H. Kim, S. H. Kim, Y. M. Jhon, S. Y. Ko, J. C. Jo, and S. S. Choi, �??Relaxation-free harmonically mode-locked semiconductor-fiber ring laser,�?? IEEE Photonics Technol. Lett. 11, 521 (1999).
    [CrossRef]
  14. H. F. Liu, Y. Ogawa, S. Oshiba, and T. Nonaka, �??Relaxation-free harmonically mode-locked semiconductor-fiber ring laser,�?? IEEE J. Quantum Electron. 11, 1655 (1991).
    [CrossRef]
  15. K. A. Ahmed, K. C. Chan, and H. F. Liu, �??Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression techique,�?? IEEE J. Quantum Electron. 1, 592 (1995).
    [CrossRef]
  16. G. P. Agrawal, Nonlinear Fiber Optics. (Academic New York, 1989).
  17. K. C. Chan, and H. F. Liu, �??Effect of third-order dispersion on soliton-effect pulse compression,�?? Opt. Lett. 19, 49 (1994).
    [CrossRef] [PubMed]
  18. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, �??Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,�?? Opt. Lett. 8, 289 (1983).
    [CrossRef] [PubMed]

Electron. Lett. (4)

M. J. Guy, J. R. Taylor and K. Wakita, �??10 GHz 1.9ps actively modelocked fibre integrated ring laser at 1.3 µm,�?? Electron. Lett. 33, 1630 (1997).
[CrossRef]

D. M. Patrick, �??Modelocked ring laser using nonlinearity in a semiconductor laser amplifier,�?? Electron. Lett. 30, 43 (1994).
[CrossRef]

J. He and K. T. Chan, �??All-optical actively modelocked fibre ring laser based on cross-gain modulation in SOA,�?? Electron. Lett. 38, 1504 (2002).
[CrossRef]

M. W. K. Mak, H. K. Tsang, and H. F. Liu, �??Wavelength-tunable 40 GHz pulse-train generation using 10 GHz gain-switched Fabry-Perot laser and semiconductor optical amplifier,�?? Electron. Lett. 36, 1580 (2000).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. F. Liu, Y. Ogawa, S. Oshiba, and T. Nonaka, �??Relaxation-free harmonically mode-locked semiconductor-fiber ring laser,�?? IEEE J. Quantum Electron. 11, 1655 (1991).
[CrossRef]

K. A. Ahmed, K. C. Chan, and H. F. Liu, �??Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression techique,�?? IEEE J. Quantum Electron. 1, 592 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electro. (1)

K. Vlahos, C. Bintjas, N. Pleros, and H. Avramopoulos, �??Ultrafast semiconductor-based fiber laser sources,�?? IEEE J. Sel. Top. Quantum Electro. 10, 147 (2004).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, �??10�?30 GHz pulse train generation from semiconductor amplifier fiber ring laser,�?? IEEE Photonics Technol. Lett. 12, 25 (2000).
[CrossRef]

D. H. Kim, S. H. Kim, Y. M. Jhon, S. Y. Ko, J. C. Jo, and S. S. Choi, �??Relaxation-free harmonically mode-locked semiconductor-fiber ring laser,�?? IEEE Photonics Technol. Lett. 11, 521 (1999).
[CrossRef]

J. Lightwave Technol. (1)

N. V. Pedersen, K. B. Jakobsen, and M. Vaa, �??Mode-locked 1.5µm semiconductor optical amplifier fiber ring,�?? J. Lightwave Technol. 14, 833 (1996).
[CrossRef]

Opt. Commun. (1)

G.-Q. Xia, Z.-M. Wu, and G.-R. Lin, �??Rising and falling time of amplified picosecond optical pulses by semiconductor optical amplifiers,�?? Opt. Commun. 227, 165 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics. (Academic New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of backward-optical-injection mode-locked SOAFL based femtosecond soliton generator. ATTN: attenuator; Amp: power amplifier; COMB: comb generator; DFBLD: distributed feedback laser diode. EDFA: erbium-doped fiber amplifier; ISO: isolator; MZM: Mach-Zehnder modulator; OC: optical coupler; RFS: RF synthesizer.

Fig. 2.
Fig. 2.

Upper: pulse shapes of the (a) injected dark-optical-comb and (b) mode-locked SOAFL; Lower: (c) the amplified spontaneous emission spectrum of SOA operated at 15°C.

Fig. 3.
Fig. 3.

Auto-correlated traces and lasing spectra of SOAFL pulse before and after chirp compensation.

Fig. 4.
Fig. 4.

Original (dotted), partially birefringent filtered (dashed) and completely filtered (solid) soliton pulses

Fig. 5.
Fig. 5.

Comparison on the pulsewidth and linewidth of the eighth-order soliton pulses compressed by SMF with different lengths.

Fig. 6.
Fig. 6.

Pulsewidth and linewidth of nonlinear compressed SOAFL pulse at different input powers and SMF lengths.

Fig. 7.
Fig. 7.

The nonlinearly compressed pulse shapes and associated spectra at different SOAFL wavelengths.

Fig. 8.
Fig. 8.

Backward injected (a) dark- and (b) bright-optical- combs, and their resulting mode-locked SOAFL pulse-trains shown in (c) and (d), respectively.

Fig. 9.
Fig. 9.

Mode-locked (dotted), dispersion compensated (dashed), and soliton compressed (solid) SOAFL pulse shapes obtained at repetition frequency of 10 GHz

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P N = 3.11 N 2 D λ 2 2 πcγ τ 2 ,
Z 0 = 0.332 c D ( τ π λ ) 2 = 0.332 π τ 2 2 β 2 ,

Metrics