Abstract

Femtosecond nonlinear pulse compression of a wavelength-tunable, backward dark-optical-comb injection harmonic-mode-locked semiconductor optical amplifier based fiber laser (SOAFL) is demonstrated for the first time. Shortest mode-locked SOAFL pulsewidth of 15 ps at 1 GHz is generated, which can further be compressed to 180 fs after linear chirp compensation, nonlinear soliton compression, and birefringent filtering. A maximum pulsewidth compression ratio for the compressed eighth-order SOAFL soliton of up to 80 is reported. The pedestal-free eighth-order soliton can be obtained by injecting the amplified pulse with peak power of 51 W into a 107.5m-long single-mode fiber (SMF), providing a linewidth and time-bandwidth product of 13.8 nm and 0.31, respectively. The tolerance in SMF length is relatively large (100-300 m) for obtaining <200fs SOAFL pulsewidth at wavelength tuning range of 1530-1560 nm. By extending the repetition frequency of dark-optical-comb up to 10 GHz, the mode-locked SOAFL pulsewidth can be slightly shortened from 5.4 ps to 3.9 ps after dispersion compensating, and further to 560 fs after second-order soliton compression. The lasing linewidth, time-bandwidth product and pulsewidth suppressing ratio of the SOAFL soliton become 4.5 nm, 0.33, and 10, respectively.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. M. J. Guy, J. R. Taylor and K. Wakita, �??10 GHz 1.9ps actively modelocked fibre integrated ring laser at 1.3 µm,�?? Electron. Lett. 33, 1630 (1997).
    [CrossRef]
  2. D. M. Patrick, �??Modelocked ring laser using nonlinearity in a semiconductor laser amplifier,�?? Electron. Lett. 30, 43 (1994).
    [CrossRef]
  3. T. Papakyriakopoulos, K. Vlachos, A. Hatziefremidis, and H. Avramopoulos, �??20-GHz broadly tunable and stable mode-locked semiconductor amplifier fiber ring laser,�?? Opt. Lett. 24, 1209 (1999).
  4. J. He and K. T. Chan, �??All-optical actively modelocked fibre ring laser based on cross-gain modulation in SOA,�?? Electron. Lett. 38, 1504 (2002).
    [CrossRef]
  5. K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, �??10�?30 GHz pulse train generation from semiconductor amplifier fiber ring laser,�?? IEEE Photonics Technol. Lett. 12, 25 (2000).
    [CrossRef]
  6. K. Tamura, J. Jacobson, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, �??77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,�?? Opt. Lett. 18, 1080 (1993).
  7. N. V. Pedersen, K. B. Jakobsen, and M. Vaa, �??Mode-locked 1.5µm semiconductor optical amplifier fiber ring,�?? J. Lightwave Technol. 14, 833 (1996).
    [CrossRef]
  8. M. W. K. Mak, H. K. Tsang, and H. F. Liu, �??Wavelength-tunable 40 GHz pulse-train generation using 10 GHz gain-switched Fabry-Perot laser and semiconductor optical amplifier,�?? Electron. Lett. 36, 1580 (2000).
    [CrossRef]
  9. K. Vlahos, C. Bintjas, N. Pleros, and H. Avramopoulos, �??Ultrafast semiconductor-based fiber laser sources,�?? IEEE J. Sel. Top. Quantum Electro. 10, 147 (2004).
  10. G.-Q. Xia, Z.-M. Wu, and G.-R. Lin, �??Rising and falling time of amplified picosecond optical pulses by semiconductor optical amplifiers,�?? Opt. Commun. 227, 165 (2003).
    [CrossRef]
  11. G.-R. Lin, Y.-S. Liao, and G.-Q. Xia, �??Dynamics of optical backward-injection-induced gain-depletion modulation and mode locking in semiconductor optical amplifier fiber lasers,�?? Opt. Express 12, 2017 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2017">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2017</a>
    [CrossRef]
  12. G.-R. Lin, I.-H. Chiu, and M.-C. Wu, �??1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression,�?? Opt. Express 13, 1008 (2005). <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-1008">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-1008</a>
    [CrossRef]
  13. D. H. Kim, S. H. Kim, Y. M. Jhon, S. Y. Ko, J. C. Jo, and S. S. Choi, �??Relaxation-free harmonically mode-locked semiconductor-fiber ring laser,�?? IEEE Photonics Technol. Lett. 11, 521 (1999).
    [CrossRef]
  14. H. F. Liu, Y. Ogawa, S. Oshiba, and T. Nonaka, �??Relaxation-free harmonically mode-locked semiconductor-fiber ring laser,�?? IEEE J. Quantum Electron. 11, 1655 (1991).
  15. K. A. Ahmed, K. C. Chan, and H. F. Liu, �??Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression techique,�?? IEEE J. Quantum Electron. 1, 592 (1995).
  16. G. P. Agrawal, Nonlinear Fiber Optics. (Academic New York, 1989).
  17. K. C. Chan, and H. F. Liu, �??Effect of third-order dispersion on soliton-effect pulse compression,�?? Opt. Lett. 19, 49 (1994).
  18. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, �??Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,�?? Opt. Lett. 8, 289 (1983).

Electron. Lett. (4)

M. J. Guy, J. R. Taylor and K. Wakita, �??10 GHz 1.9ps actively modelocked fibre integrated ring laser at 1.3 µm,�?? Electron. Lett. 33, 1630 (1997).
[CrossRef]

D. M. Patrick, �??Modelocked ring laser using nonlinearity in a semiconductor laser amplifier,�?? Electron. Lett. 30, 43 (1994).
[CrossRef]

J. He and K. T. Chan, �??All-optical actively modelocked fibre ring laser based on cross-gain modulation in SOA,�?? Electron. Lett. 38, 1504 (2002).
[CrossRef]

M. W. K. Mak, H. K. Tsang, and H. F. Liu, �??Wavelength-tunable 40 GHz pulse-train generation using 10 GHz gain-switched Fabry-Perot laser and semiconductor optical amplifier,�?? Electron. Lett. 36, 1580 (2000).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. F. Liu, Y. Ogawa, S. Oshiba, and T. Nonaka, �??Relaxation-free harmonically mode-locked semiconductor-fiber ring laser,�?? IEEE J. Quantum Electron. 11, 1655 (1991).

K. A. Ahmed, K. C. Chan, and H. F. Liu, �??Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression techique,�?? IEEE J. Quantum Electron. 1, 592 (1995).

IEEE J. Sel. Top. Quantum Electro. (1)

K. Vlahos, C. Bintjas, N. Pleros, and H. Avramopoulos, �??Ultrafast semiconductor-based fiber laser sources,�?? IEEE J. Sel. Top. Quantum Electro. 10, 147 (2004).

IEEE Photonics Technol. Lett. (2)

K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, �??10�?30 GHz pulse train generation from semiconductor amplifier fiber ring laser,�?? IEEE Photonics Technol. Lett. 12, 25 (2000).
[CrossRef]

D. H. Kim, S. H. Kim, Y. M. Jhon, S. Y. Ko, J. C. Jo, and S. S. Choi, �??Relaxation-free harmonically mode-locked semiconductor-fiber ring laser,�?? IEEE Photonics Technol. Lett. 11, 521 (1999).
[CrossRef]

J. Lightwave Technol. (1)

N. V. Pedersen, K. B. Jakobsen, and M. Vaa, �??Mode-locked 1.5µm semiconductor optical amplifier fiber ring,�?? J. Lightwave Technol. 14, 833 (1996).
[CrossRef]

Opt. Commun. (1)

G.-Q. Xia, Z.-M. Wu, and G.-R. Lin, �??Rising and falling time of amplified picosecond optical pulses by semiconductor optical amplifiers,�?? Opt. Commun. 227, 165 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics. (Academic New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics