Abstract

This paper presents an innovative solid-state current amplifier based on impact ionization. The operation principle, fabrication, and test results for this device are reported. This amplifier was built on a silicon surface using standard microelectronics processes including ion implantation. Testing was performed by connecting the device to both silicon and indium-gallium-arsenide photodiodes to demonstrate its compatibility with arbitrary current sources. Current gains above 100 along with pre-amplified leakage currents of less than 10 nA were measured.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P.A. Wolff, �??Theory of Secondary Electron Cascade in Metals,�?? Phys. Rev. 95, 56-66 (1954).
    [CrossRef]
  2. C. L. Anderson, and C. R. Crowell, �??Threshold Energies for Electron-Hole Pair Production by Impact Ionization in Semiconductors,�?? Phys. Rev. B 5, 2267-2272 (1972).
    [CrossRef]
  3. C. Cohen-Jonathan, L. Giraudet, A. Bonzo, and J. P. Praseuth, �??Waveguide AlInAs/GaAlInAs avalanche photodiode with a gain-bandwidth product over 160 GHz,�?? Electron. Lett. 33, 1492�??1493 (1997).
    [CrossRef]
  4. G. S. Kinsey, J. C. Campbell, and A. G. Dentai, �??Waveguide avalanche photodiode operating at 1.55 μ m with a gain-bandwidth product of 320 GHz,�?? IEEE Photonics Technol. Lett. 13, 842�??844 (2001).
    [CrossRef]
  5. C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, �??Avalanche noise measurements in thin Si p- i- n diodes,�?? Appl. Phys. Lett. 76, 3926�??3928 (2000).
    [CrossRef]
  6. E. Cartier, M. V. Fischetti, E. A. Eklund, and F. R. Mcfeely, �??Impact ionization in silicon,�?? Appl. Phys. Lett. 62, 3339-3341 (1993).
    [CrossRef]
  7. A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, �??High Gain-Bandwidth-Product Silicon Heterointerface Photodetector,�?? Appl. Phys. Lett. 70, 303-305 (1997).
    [CrossRef]
  8. Hong-Wei Lee and Aaron R. Hawkins, �??Solid-state current amplifier based on impact ionization,�?? Appl. Phys. Lett. 87, 073511 (2005).
    [CrossRef]

Appl. Phys. Lett.

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, �??Avalanche noise measurements in thin Si p- i- n diodes,�?? Appl. Phys. Lett. 76, 3926�??3928 (2000).
[CrossRef]

E. Cartier, M. V. Fischetti, E. A. Eklund, and F. R. Mcfeely, �??Impact ionization in silicon,�?? Appl. Phys. Lett. 62, 3339-3341 (1993).
[CrossRef]

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, �??High Gain-Bandwidth-Product Silicon Heterointerface Photodetector,�?? Appl. Phys. Lett. 70, 303-305 (1997).
[CrossRef]

Hong-Wei Lee and Aaron R. Hawkins, �??Solid-state current amplifier based on impact ionization,�?? Appl. Phys. Lett. 87, 073511 (2005).
[CrossRef]

Electron. Lett.

C. Cohen-Jonathan, L. Giraudet, A. Bonzo, and J. P. Praseuth, �??Waveguide AlInAs/GaAlInAs avalanche photodiode with a gain-bandwidth product over 160 GHz,�?? Electron. Lett. 33, 1492�??1493 (1997).
[CrossRef]

IEEE Photonics Technol. Lett.

G. S. Kinsey, J. C. Campbell, and A. G. Dentai, �??Waveguide avalanche photodiode operating at 1.55 μ m with a gain-bandwidth product of 320 GHz,�?? IEEE Photonics Technol. Lett. 13, 842�??844 (2001).
[CrossRef]

Phys. Rev.

P.A. Wolff, �??Theory of Secondary Electron Cascade in Metals,�?? Phys. Rev. 95, 56-66 (1954).
[CrossRef]

Phys. Rev. B

C. L. Anderson, and C. R. Crowell, �??Threshold Energies for Electron-Hole Pair Production by Impact Ionization in Semiconductors,�?? Phys. Rev. B 5, 2267-2272 (1972).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Device operation illustration with a reverse biased photodiode connected as a current source. A high electric field is established between the Schottky contact and n+ region. Ionized electrons are collected at the n+ region while ionized holes are directed to the p-sinks.

Fig. 2.
Fig. 2.

(a) Picture of the solid-state impact-ionization multiplier (SIM). (b) Device geometry of the SIM. An n+ region was implanted with phosphorous for multiplied electron collection. The two p-sinks at the side were implanted with boron to collect holes. Schottky metal serves as the current injection point. The length between Schottky and n+ region was varied between 3 and 9 μm for different device designs on the same substrate. (~4 μm in this case)

Fig. 3.
Fig. 3.

(a) Current versus voltage measurements at the n+ region of the SIM when connected to an external Si photodiode illuminated with a 633 nm HeNe laser at different power levels. (b) Gain efficiency versus applied voltage at the n+ region of the SIM with photocurrent injected from an external Si photodiode.

Fig. 4.
Fig. 4.

(a) Current versus voltage measurements at the n+ region of the SIM when connected to an external InGaAs photodiode illuminated with a 1300 nm laser at different power levels. (b) Gain efficiency versus applied voltage at the n+ region of the SIM with photocurrent injected from an external InGaAs photodiode.

Fig. 5.
Fig. 5.

Current versus voltage measurements when forward biasing the p-sink to n+ region of the SIM. The contact resistance is calculated to be 50 Ω at 5 V.

Metrics