Abstract

We present here the experimental results from research conducted on negative refraction and focusing by a two-dimensional (2D) left-handed metamaterial (LHM) slab. By measuring the refracted electromagnetic (EM) waves from a LHM slab, we find an effective refractive index of -1.86. A 2D scanning transmission measurement technique is used to measure the intensity distribution of the EM waves that radiate from the point source. The flat lens behavior of a 2D LHM slab is demonstrated for two different point source distances of ds = 0.5λ and λ. The full widths at half maximum of the focused beams are 0.36λ and 0.4λ, respectively, which are both below the diffraction limit.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. V. G. Veselago, �??The electrodynamics of substances with simultaneously negative values of permittivity and permeability,�?? Sov. Phys. Usp. 10, 504 (1968).
    [CrossRef]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, �??Low frequency plasmons in thin-wire structures,�?? J. Phys.: Condens. Matter 10, 4785 (1998).
    [CrossRef]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, �??Magnetism from conductors and enhanced nonlinear phenomena,�?? IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
    [CrossRef]
  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, �??Composite medium with simultaneously negative permeability and permittivity,�?? Phys. Rev. Lett. 84, 4184 (2000).
    [CrossRef] [PubMed]
  5. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, �??Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,�?? Appl. Phys. Lett. 78, 489 (2001).
    [CrossRef]
  6. R. A. Shelby, D. R. Smith, and S. Schultz, �??Experimental verification of a negative index of refraction,�?? Science 292, 77 (2001).
    [CrossRef] [PubMed]
  7. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. Koltenbah, and M. Tanielian, �??Experimental Verification and Simulation of Negative Index of Refraction Using Snell�??s Law,�?? Phys. Rev. Lett. 90, 107401 (2003).
    [CrossRef] [PubMed]
  8. A. A. Houck, J. B. Brock, and I. L. Chuang, �??Experimental Observations of a Left-Handed Material That Obeys Snell's Law,�?? Phys. Rev. Lett. 90, 137401 (2003).
    [CrossRef] [PubMed]
  9. K. Aydin, K. Guven, C. M. Soukoulis, and E. Ozbay, �??Observation of negative refraction and negative phase velocity in left-handed metamaterials,�?? Appl. Phys. Lett. 86, 124102 (2005).
    [CrossRef]
  10. K. Aydin, and E. Ozbay, �??Negative refraction through impedance matched left-handed metamaterial slab,�?? J. Opt. Soc. Am. B, (to be published).
  11. K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, �??Experimental observation of true left-handed transmission peak in metamaterials,�?? Opt. Lett. 29, 2623 (2004).
    [CrossRef] [PubMed]
  12. M. Notomi, �??Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap,�?? Phys. Rev. B 62, 10696 (2000).
    [CrossRef]
  13. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, �??All-angle negative refraction without negative effective index�?? Phys. Rev. B 65, 201104(R) (2002).
    [CrossRef]
  14. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, �??Electromagnetic waves: Negative refraction by photonic crystals,�?? Nature 423, 604 (2003).
    [CrossRef] [PubMed]
  15. E. Cubukcu, K. Aydin, S. Foteinopolou, C. M. Soukoulis, and E. Ozbay, �??Subwavelength resolution in a two-dimensional photonic crystal based superlens,�?? Phys. Rev. Lett. 91, 207401 (2003).
    [CrossRef] [PubMed]
  16. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, �??Imaging by flat lens using negative refraction,�?? Nature 426, 404 (2003).
    [CrossRef] [PubMed]
  17. K. Guven, K. Aydin, K. B. Alici, C. M. Soukoulis, and E. Ozbay, �??Spectral negative refraction and focusing analysis of a two-dimensional left-handed photonic crystal lens,�?? Phys. Rev. B 70, 205125 (2004).
    [CrossRef]
  18. J. B. Pendry, �??Negative Refraction Makes a Perfect Lens,�?? Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]
  19. A. Grbic, and G. V. Eleftheriades, �??Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens,�?? Phys. Rev. Lett. 92, 117403 (2004).
    [CrossRef] [PubMed]
  20. N. Fang, and X. Zhang, �??Imaging properties of a metamaterial superlens�?? Appl. Phys. Lett. 82, 161 (2003).
    [CrossRef]
  21. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, �??Limitations on subdiffraction imaging with a negative refractive index slab,�?? Appl. Phys. Lett. 82, 1506 (2003)
    [CrossRef]
  22. A. N. Lagarkov, and V. N. Kissel, �??Near-Perfect Imaging in a Focusing System Based on a Left-Handed-Material Plate,�?? Phys. Rev. Lett. 92, 077401-1 (2004).
    [CrossRef] [PubMed]
  23. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, �??Subwavelength imaging in photonic crystals�?? Phys. Rev. B 68, 045115 (2003).
    [CrossRef]
  24. N. Fang, H. Lee, C. Sun, and X. Zhang, �??Sub-diffraction Limited Optical Imaging with a Silver Superlens,�?? Science 308, 534 (2005).
    [CrossRef] [PubMed]
  25. J. D. Wilson, and Z. D. Schwartz, �??Multifocal flat lens with left-handed metamaterial,�?? Appl. Phys. Lett. 86, 02113 (2005).
    [CrossRef]
  26. C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, D. C. Vier, and M. H. Tanielian, �??Performance of negative index of refraction lens,�?? Appl. Phys. Lett. 84, 3232 (2004).
    [CrossRef]
  27. P. Vodo, P. V. Parimi, W. T. Lu, and S. Sridhar, �??Focusing by plano-concave lens using negative refraction,�?? Appl. Phys. Lett. 86, 201108 (2005).
    [CrossRef]
  28. W. T. Lu, and S. Sridhar, �??Flat lens without optical axis: Theory of Imaging,�?? arXiv:condmat/ 0501715, (2005).

Appl. Phys. Lett. (7)

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, �??Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,�?? Appl. Phys. Lett. 78, 489 (2001).
[CrossRef]

K. Aydin, K. Guven, C. M. Soukoulis, and E. Ozbay, �??Observation of negative refraction and negative phase velocity in left-handed metamaterials,�?? Appl. Phys. Lett. 86, 124102 (2005).
[CrossRef]

N. Fang, and X. Zhang, �??Imaging properties of a metamaterial superlens�?? Appl. Phys. Lett. 82, 161 (2003).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, �??Limitations on subdiffraction imaging with a negative refractive index slab,�?? Appl. Phys. Lett. 82, 1506 (2003)
[CrossRef]

J. D. Wilson, and Z. D. Schwartz, �??Multifocal flat lens with left-handed metamaterial,�?? Appl. Phys. Lett. 86, 02113 (2005).
[CrossRef]

C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, D. C. Vier, and M. H. Tanielian, �??Performance of negative index of refraction lens,�?? Appl. Phys. Lett. 84, 3232 (2004).
[CrossRef]

P. Vodo, P. V. Parimi, W. T. Lu, and S. Sridhar, �??Focusing by plano-concave lens using negative refraction,�?? Appl. Phys. Lett. 86, 201108 (2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, �??Magnetism from conductors and enhanced nonlinear phenomena,�?? IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

K. Aydin, and E. Ozbay, �??Negative refraction through impedance matched left-handed metamaterial slab,�?? J. Opt. Soc. Am. B, (to be published).

J. Phys.: Condens. Matter (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, �??Low frequency plasmons in thin-wire structures,�?? J. Phys.: Condens. Matter 10, 4785 (1998).
[CrossRef]

Nature (2)

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, �??Imaging by flat lens using negative refraction,�?? Nature 426, 404 (2003).
[CrossRef] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, �??Electromagnetic waves: Negative refraction by photonic crystals,�?? Nature 423, 604 (2003).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (4)

M. Notomi, �??Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap,�?? Phys. Rev. B 62, 10696 (2000).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, �??All-angle negative refraction without negative effective index�?? Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

K. Guven, K. Aydin, K. B. Alici, C. M. Soukoulis, and E. Ozbay, �??Spectral negative refraction and focusing analysis of a two-dimensional left-handed photonic crystal lens,�?? Phys. Rev. B 70, 205125 (2004).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, �??Subwavelength imaging in photonic crystals�?? Phys. Rev. B 68, 045115 (2003).
[CrossRef]

Phys. Rev. Lett. (7)

E. Cubukcu, K. Aydin, S. Foteinopolou, C. M. Soukoulis, and E. Ozbay, �??Subwavelength resolution in a two-dimensional photonic crystal based superlens,�?? Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

A. N. Lagarkov, and V. N. Kissel, �??Near-Perfect Imaging in a Focusing System Based on a Left-Handed-Material Plate,�?? Phys. Rev. Lett. 92, 077401-1 (2004).
[CrossRef] [PubMed]

J. B. Pendry, �??Negative Refraction Makes a Perfect Lens,�?? Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

A. Grbic, and G. V. Eleftheriades, �??Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens,�?? Phys. Rev. Lett. 92, 117403 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, �??Composite medium with simultaneously negative permeability and permittivity,�?? Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. Koltenbah, and M. Tanielian, �??Experimental Verification and Simulation of Negative Index of Refraction Using Snell�??s Law,�?? Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

A. A. Houck, J. B. Brock, and I. L. Chuang, �??Experimental Observations of a Left-Handed Material That Obeys Snell's Law,�?? Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef] [PubMed]

Science (2)

R. A. Shelby, D. R. Smith, and S. Schultz, �??Experimental verification of a negative index of refraction,�?? Science 292, 77 (2001).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, �??Sub-diffraction Limited Optical Imaging with a Silver Superlens,�?? Science 308, 534 (2005).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, �??The electrodynamics of substances with simultaneously negative values of permittivity and permeability,�?? Sov. Phys. Usp. 10, 504 (1968).
[CrossRef]

Other (1)

W. T. Lu, and S. Sridhar, �??Flat lens without optical axis: Theory of Imaging,�?? arXiv:condmat/ 0501715, (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic drawings of the top view of the experimental setup used for verifying (a) negative refraction, and (b) flat lens focusing.

Fig. 2.
Fig. 2.

(a) Spatial intensity distribution of an outgoing EM wave at 3.86 GHz along the x-z plane. (b) Intensity profile of an EM wave at the LHM-air interface (z = 0).

Fig. 3.
Fig. 3.

Measured transmission spectra along the x-z plane for a point source located at (a) ds = 39 mm, and (b) ds = 78 mm away from the LHM lens. The x direction is parallel to the LHM lens where x = 0 is the optical axis of the flat lens, whereas the z direction is perpendicular to the LHM lens where z = 0 is the LHM-air interface.

Fig. 4.
Fig. 4.

Intensity profiles of the focused EM waves taken at (a) x = 0 point along longitudinal direction, and (b) focal points of each source along the lateral direction. The graphs are for the point source located at λ/2 (black) and λ(red) away from the air-LHM interface.

Metrics