Abstract

A polarization-independent phase-only liquid crystal (LC) phase modulator using a double-layered structure is demonstrated. Two orthogonal LC layers are separated by two ultra-thin anisotropic polymer films. The anisotropic polymeric films not only separate the LC layers but also provide good molecular alignment. As a result, a polarization-independent phase modulator with 2π phase shift is achieved at 9Vrms and 8.1π at 40Vrms using a 12-μm-thick E7 LC layers. This operating voltage is ~10X lower than that using a conventional 0.3-mm-thick glass separator.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, �??Optical phased arrays technology,�?? Proc. IEEE 84, 268-298 (1996).
    [CrossRef]
  2. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, �??Tunable-focus flat liquid crystal spherical lens,�?? Appl. Phys. Lett. 84, 4789-4791 (2004).
    [CrossRef]
  3. H. Ren, Y. H. Fan, and S. T. Wu, �??Prism grating using polymer stabilized nematic liquid crystal,�?? Appl. Phys. Lett. 82, 3168-3170 (2003).
    [CrossRef]
  4. U. Efron, Spatial Light Modulators, (Marcel Dekker, New York, 1994).
  5. V. Freedericksz and V. Zolina, �??Forces causing the orientation of an anisotropic liquid,�?? Trans. Faraday Soc. 29, 919-930 (1933).
    [CrossRef]
  6. Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, �??Fast-response and scattering-free polymer network liquid crystals,�?? Appl. Phys. Lett. 84, 1233-1235 (2004).
    [CrossRef]
  7. Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu and S. T. Wu, �??Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,�?? Opt. Express 12, 6377-6348 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382</a>
    [CrossRef]
  8. J. L. West, G. Zhang, and A. Glushchenko, �??Fast birefringent mode stressed liquid crystal,�?? Appl. Phys. Lett. 86, 031111 (2005).
    [CrossRef]
  9. J. S. Patel, �??Polarization insensitive tunable liquid-crystal etalon filter,�?? Appl. Phys. Lett. 59, 1314-1316 (1991).
    [CrossRef]
  10. Y. Huang, T. X. Wu, and S. T. Wu, �??Simulations of liquid-crystal Fabry-Perot etalons by an improved 4x4 matrix method,�?? J. Appl. Phys. 93, 2490-2495 (2003).
    [CrossRef]
  11. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, �??Electrically switchable volume gratings in polymer-dispersed liquid crystals,�?? Appl. Phys. Lett. 64, 1074-1076 (1994).
    [CrossRef]
  12. H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, �??Polarization-independent phase modulation using a polymer-dispersed liquid crystal,�?? Appl. Phys. Lett. 86, 141110 (2005).
    [CrossRef]
  13. Y. H. Lin, H. Ren, Y. H. Fan, Y. H. Wu, and S. T. Wu, �??Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,�?? J. Appl. Phys. 98, 043112 (2005).
    [CrossRef]
  14. B. Bahadur, Liquid Crystals Applications and Uses, (World Scientific, Singapore, 1992), Vol. 3, Chap. 11.
    [CrossRef]
  15. S. T. Wu and D. K. Yang, Reflective liquid crystal displays, (New York: Wiley, 2001).
  16. T. Uchida, H. Seki, C. Shishido, and M. Wada, �??Bright dichroic guest-host LCDs without a polarizer,�?? Proc. SID, 22, 41-46 (1981).
  17. M. Hasegawa, K. Takeda, Y. Sakaguchi, J. Egelhaaf, E. Lueder, Y. Taira, and A. C. Lowe, �??320-dpi 4-inch reflective stacked crossed guest-host display,�?? SID Symposium Digest, 30, 962-965 (1999).
    [CrossRef]
  18. M. Hasegawa,C. Hellermark, A. Nishikai, Y. Taira, and A. C. Lowe, �??Reflective stacked crossed guest-host display with a planarized inner diffuser,�?? SID Symposium Digest, 31, 128-131 (2000).
    [CrossRef]
  19. Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, and S. T. Wu, �??Single-substrate IPS-LCD using an anisotropic polymer film,�?? Proc. SPIE, 5936, 59360O (2005).
    [CrossRef]
  20. S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, �??High birefringence isothiocyanato tolane liquid crystals,�?? Jpn. J. Appl. Phys. 42, 3463-3466 (2003).
    [CrossRef]

. Phys. Lett.

J. L. West, G. Zhang, and A. Glushchenko, �??Fast birefringent mode stressed liquid crystal,�?? Appl. Phys. Lett. 86, 031111 (2005).
[CrossRef]

Appl. Phys. Lett.

J. S. Patel, �??Polarization insensitive tunable liquid-crystal etalon filter,�?? Appl. Phys. Lett. 59, 1314-1316 (1991).
[CrossRef]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, �??Fast-response and scattering-free polymer network liquid crystals,�?? Appl. Phys. Lett. 84, 1233-1235 (2004).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, �??Tunable-focus flat liquid crystal spherical lens,�?? Appl. Phys. Lett. 84, 4789-4791 (2004).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, �??Prism grating using polymer stabilized nematic liquid crystal,�?? Appl. Phys. Lett. 82, 3168-3170 (2003).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, �??Electrically switchable volume gratings in polymer-dispersed liquid crystals,�?? Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, �??Polarization-independent phase modulation using a polymer-dispersed liquid crystal,�?? Appl. Phys. Lett. 86, 141110 (2005).
[CrossRef]

J. Appl. Phys.

Y. H. Lin, H. Ren, Y. H. Fan, Y. H. Wu, and S. T. Wu, �??Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture,�?? J. Appl. Phys. 98, 043112 (2005).
[CrossRef]

Y. Huang, T. X. Wu, and S. T. Wu, �??Simulations of liquid-crystal Fabry-Perot etalons by an improved 4x4 matrix method,�?? J. Appl. Phys. 93, 2490-2495 (2003).
[CrossRef]

Jpn. J. Appl. Phys.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, �??High birefringence isothiocyanato tolane liquid crystals,�?? Jpn. J. Appl. Phys. 42, 3463-3466 (2003).
[CrossRef]

Opt. Express

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu and S. T. Wu, �??Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,�?? Opt. Express 12, 6377-6348 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6382</a>
[CrossRef]

Proc. IEEE

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, �??Optical phased arrays technology,�?? Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Proc. SID

T. Uchida, H. Seki, C. Shishido, and M. Wada, �??Bright dichroic guest-host LCDs without a polarizer,�?? Proc. SID, 22, 41-46 (1981).

Proc. SPIE

Y. H. Lin, H. Ren, S. Gauza, Y. H. Wu, and S. T. Wu, �??Single-substrate IPS-LCD using an anisotropic polymer film,�?? Proc. SPIE, 5936, 59360O (2005).
[CrossRef]

SID Symposium Digest 1999

M. Hasegawa, K. Takeda, Y. Sakaguchi, J. Egelhaaf, E. Lueder, Y. Taira, and A. C. Lowe, �??320-dpi 4-inch reflective stacked crossed guest-host display,�?? SID Symposium Digest, 30, 962-965 (1999).
[CrossRef]

SID Symposium Digest 2000

M. Hasegawa,C. Hellermark, A. Nishikai, Y. Taira, and A. C. Lowe, �??Reflective stacked crossed guest-host display with a planarized inner diffuser,�?? SID Symposium Digest, 31, 128-131 (2000).
[CrossRef]

Trans. Faraday Soc.

V. Freedericksz and V. Zolina, �??Forces causing the orientation of an anisotropic liquid,�?? Trans. Faraday Soc. 29, 919-930 (1933).
[CrossRef]

Other

U. Efron, Spatial Light Modulators, (Marcel Dekker, New York, 1994).

B. Bahadur, Liquid Crystals Applications and Uses, (World Scientific, Singapore, 1992), Vol. 3, Chap. 11.
[CrossRef]

S. T. Wu and D. K. Yang, Reflective liquid crystal displays, (New York: Wiley, 2001).

Supplementary Material (1)

» Media 1: MPG (702 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The structure of a polarization-independent phase modulator.

Fig. 2.
Fig. 2.

AFM images of the anisotropic polymer film surface. LC directors are aligned along the arrow. The color bars indicate the height.

Fig. 3.
Fig. 3.

Mach-Zehnder interferometer for measuring the phase shift. M: dielectric mirror, and BS: beam splitter.

Fig. 4.
Fig. 4.

(a) Interference patterns at various voltages (703 KB) and (b) intensity profiles at 0 (blue), 7 (green) and 9 Vrms (red). The two orthogonal LC cells are 12-μm E7 layers. λ=633 nm from an unpolarized He-Ne laser.

Fig. 5.
Fig. 5.

Voltage-dependent phase shift of the polarization-independent LC phase modulator at λ=633 nm. Filled circles represent the measured data using our anisotropic polymeric films while open circles are the simulated results of the double-layered structure using a 0.3-mm-thick glass separator.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E i = A x · x ̂ + A y · y ̂ ,
E o = A x · e i·κ· ( n e + n o ) ·d · x ̂ + A y · e i·κ· ( n e + n o ) ·d · y ̂
E o = e i·κ· ( n eff θ ψ + n eff θ π 2 + ψ ) ·d · ( A x · x ̂ + A y · y ̂ )
ϕ ( V ) = κ· ( n eff θ ψ + n eff θ π 2 + ψ 2 ) · d + δ ,
ψ ( 0 ) = κ· ( n e + n o 2 ) · d + δ ,
n eff θ ψ = n eff ( θ , π 2 + ψ ) = n o ,
ϕ ( V > > 0 ) = κ· ( 2 n o 2 ) · d + δ
Δ ϕ = ϕ ( 0 ) ϕ ( V > > 0 ) = ( 2 π λ ) ·d· ( n e n o ) ,

Metrics