Abstract

Techniques of digital holography are improved in order to obtain high-resolution, high-fidelity images of quantitative phase-contrast microscopy. In particular, the angular spectrum method of calculating holographic optical field is seen to have significant advantages including tight control of spurious noise components. Holographic phase images are obtained with 0.5 μm diffraction-limited lateral resolution and largely immune from the coherent noise common in other holographic techniques. The phase profile is accurate to about 30 nm of optical thickness. Images of SKOV-3 ovarian cancer cells display intracellular and intranuclear organelles with clarity and quantitative accuracy.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. Torok and F.J. Kao, Optical imaging and microscopy (Springer-Verlag, 2003).
  2. A. Barty, K. A. Nugent, D. Paganin and A. Roberts, �??Quantitative optical phase microscopy,�?? Opt. Lett. 23, 817-9 (1998).
    [CrossRef]
  3. G. Popescu, L. P. Delflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari and M. S. Feld, �??Fourier phase microscopy for investigation of biological structures and dynamics,�?? Opt. Lett. 29, 2503-5 (2004).
    [CrossRef] [PubMed]
  4. C. G. Rylander, D. Dave, T. Akkin, T. E. Milner, K. R. Diller and A. J. Welch, �??Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy�??. Opt. Lett. 29, 1509-11 (2004).
    [CrossRef] [PubMed]
  5. U. Schnars and W.P. Jueptner, Digital Holography (Springer-Verlag, 2005).
  6. E. Cuche, F. Bevilacqua, and C. Depeursinge, �??Digital holography for quantitative phase-contrast imaging,�?? Opt. Lett. 24, 291-3 (1999).
    [CrossRef]
  7. L. Xu, X. Peng, J. Miao, and A.K. Asundi, �??Studies of digital microscopic holography with applications to microstructure testing�??, Appl. Opt. 40, 5046-51 (2001).
    [CrossRef]
  8. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, �??Image formation in phase-shifting digital holography and applications to microscopy,�?? Appl. Opt. 40, 6177-86 (2001).
    [CrossRef]
  9. Zhang, T. and I. Yamaguchi, �??Three-dimensional microscopy with phase-shifting digital holography,�?? Opt. Lett. 23, 1221 (1998).
    [CrossRef]
  10. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, �??Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,�?? Appl. Opt. 42, 1938-46 (2003).
    [CrossRef] [PubMed]
  11. M.K. Kim, �??Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,�?? Opt. Express 7, 305-10 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-9-305">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-9-305</a>
    [CrossRef] [PubMed]
  12. J. Gass, A. Dakoff, and M.K. Kim, �??Phase imaging without 2�? ambiguity by multiple-wavelength digital holography,�?? Opt. Lett. 28, 1141-3 (2003).
    [CrossRef] [PubMed]
  13. Marquet, B. Rappaz, P.J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, �??Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwevelength axial accuracy�??, Opt. Lett. 30, 468-70 (2005).
    [CrossRef] [PubMed]
  14. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  15. Lingfeng Yu and Myung K Kim, �??Wavelength-scanning digital interference holography for tomographic 3D imaging using the angular spectrum method,�?? Opt. Lett. 30, 2092 (2005).
    [CrossRef] [PubMed]
  16. T. M. Kreis, M. Adams and W. P. O. Jueptner, �??Methods of digital holography: a comparison,�?? Proc. SPIE 3098, 224-33 (1997).
    [CrossRef]

Appl. Opt. (3)

Opt. Express (1)

Opt. Lett. (7)

Opt. Lett. 23 (1)

A. Barty, K. A. Nugent, D. Paganin and A. Roberts, �??Quantitative optical phase microscopy,�?? Opt. Lett. 23, 817-9 (1998).
[CrossRef]

Proc. SPIE (1)

T. M. Kreis, M. Adams and W. P. O. Jueptner, �??Methods of digital holography: a comparison,�?? Proc. SPIE 3098, 224-33 (1997).
[CrossRef]

Other (3)

P. Torok and F.J. Kao, Optical imaging and microscopy (Springer-Verlag, 2003).

U. Schnars and W.P. Jueptner, Digital Holography (Springer-Verlag, 2005).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Apparatus for digital holography experiments. See text for details

Fig. 2.
Fig. 2.

Holography of a resolution target. The image area is 25 × 25 μm2 (452 × 452 pixels) and the image is at z = 7 μm from the hologram: (a) hologram; (b) angular spectrum; (c) amplitude and (d) phase images by angular spectrum method; (e) amplitude and (f) phase images by Huygens convolution method; (g) amplitude and (h) phase images by Fresnel transform method; (i) 3D pseudocolor rendering of (d). The individual bars are 2.2 μm wide.

Fig. 3.
Fig. 3.

Holography of confluent SKOV-3 ovarian cancer cells. The image area is 60 × 60 μm2 (404 × 404 pixels) and the image is at z = 10 μm from the hologram: (a) Zernike phase contrast image; (b) holographic amplitude and (c) phase images; (d) unwrapped phase image; (e) 3D pseudocolor rendering of (d).

Fig. 4.
Fig. 4.

Holography of non-confluent SKOV-3 cells. The image area is 60 × 60 μm2 (404 × 404 pixels) and the image is at z = 5 μm from the hologram: (a) Zernike phase contrast image; (b) holographic amplitude and (c) phase images; (d) unwrapped phase image; (e) 3D pseudocolor rendering of (d).

Metrics