Abstract

Locating and steering entire ensembles of microscopic objects has become extremely practical with the emergence of holographic optical tweezers. Application of this technology to single molecule experiments requires great accuracy in the spatial positioning of optical traps. This paper calculates the theoretical position resolution of a single holographic beam, predicting that sub-nanometer resolution is easily achieved. Experimental corroboration of the spatial resolution’s inverse dependence on the hologram’s number of pixels and phase levels is presented. To at least a nanometer range position resolution, multiple optical tweezers created by complex superposition holograms also follow the theoretical predictions for a single beam.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. A. Ashkin, J. M. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [CrossRef]
  3. K. C. Neuman and S. Block, “Optical Trapping,” Rev. Sci. Instr. 75, 2787–2809 (2004).
    [CrossRef]
  4. T. Gustavson, A. Chikkatur, A. Leanhardt, A. Gorlitz, S. Gupta, D. Pritchard, and W. Ketterle, “Transport of Bose-Einstein condensates with optical tweezers,” Phys. Rev. Lett. 88, 020,401 (2001).
  5. J. Guck, R. Ananthakrishnan, H.Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81, 767–784 (2001).
  6. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
    [CrossRef]
  7. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optical elements,” Rev. Sci. Instr. 69, 1974–1977 (1998).
    [CrossRef]
  8. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computergenerated holograms,” Opt. Commun. 185, 77 (2000).
    [CrossRef]
  9. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instr. 72, 1810–1816 (2001).
    [CrossRef]
  10. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
    [CrossRef]
  11. M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13, 5831–5845 (2005).
    [CrossRef]
  12. R. L. Eriksen, P. Mogensen, and J. Gluckstad, “Multiple beam optical tweezers generated by the generalized phase contrast method,” Opt. Lett. 27, 267–269 (2002).
  13. D. McGloin, G. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Applications of spatial light modulators in atom optics,” Opt. Express 11, 158–166 (2003).
  14. A. Jesacher, S. F¨urhapter, S. Bernet, and M.Ritsch-Marte, “Diffractive optical tweezers in the Fresnel regime,” Opt. Express 12, 2243–2250 (2004).
    [CrossRef]
  15. G.Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm,” New J. Phys. 7, 1–12 (2005).
    [CrossRef]
  16. M. Lang, C. L. Asbury, J. Shaevitz, and S. M. Block, “An Automated Two-Dimensional Optical Force Clamp for Single Molecule Studies,” Biophys. J. 83, 491501 (2002).
  17. W. J. Hossack, E. Theofanidou, and J. Crain, “High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay,” Opt. Express 11, 253–259 (2003).
  18. G. J. Wuite, R. J. Davenport, A. Rappaport, and C. Bustamante, “An integrated laser trap/flow control video microscope for the study of single biomolecules,” Biophys. J. 79, 1155–1167 (2000).
  19. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  20. G. Sinclair, P. Jordan, J. Leach, and M. J. Padgett, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409–414 (2004).
  21. S.-H. Lee, and D. G. Grier, “Robustness of holographic optical traps against phase scaling errors,” Opt. Express 13, 7458–7465 (2005).
    [CrossRef]
  22. K. L. Tan, S. T. Warr, I. G. Manolis, T. D. Wilkinson, M. M. Redmond, W. A. Crossland, R. J. Mears, and B. Robertson, “Dynamic holography for optical interconnections. II. Routing holograms with predictable location and intensity of each diffraction order,” J. Opt. Soc. Am. A 18, 205–215 (2001).
  23. J. E. Curtis, C. H. J. Schmitz, and J. P. Spatz, “Symmetry dependence of holograms for optical trapping,” Opt. Lett. 30, 2086–2088 (2005).
    [CrossRef]
  24. Due to total internal reflection of rays at the glass coverslip / water interface, the real NA of the objective (1.45) is reduced to 1.33.

Biophys. J. (3)

J. Guck, R. Ananthakrishnan, H.Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81, 767–784 (2001).

M. Lang, C. L. Asbury, J. Shaevitz, and S. M. Block, “An Automated Two-Dimensional Optical Force Clamp for Single Molecule Studies,” Biophys. J. 83, 491501 (2002).

G. J. Wuite, R. J. Davenport, A. Rappaport, and C. Bustamante, “An integrated laser trap/flow control video microscope for the study of single biomolecules,” Biophys. J. 79, 1155–1167 (2000).

Contemp. Phys. (1)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
[CrossRef]

J. Mod. Opt. (1)

G. Sinclair, P. Jordan, J. Leach, and M. J. Padgett, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409–414 (2004).

J. Opt. Soc. Am. A (1)

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef]

New J. Phys. (1)

G.Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm,” New J. Phys. 7, 1–12 (2005).
[CrossRef]

Opt. Commun. (2)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computergenerated holograms,” Opt. Commun. 185, 77 (2000).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Optik (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Phys. Rev. Lett. (1)

T. Gustavson, A. Chikkatur, A. Leanhardt, A. Gorlitz, S. Gupta, D. Pritchard, and W. Ketterle, “Transport of Bose-Einstein condensates with optical tweezers,” Phys. Rev. Lett. 88, 020,401 (2001).

Rev. Sci. Instr. (3)

K. C. Neuman and S. Block, “Optical Trapping,” Rev. Sci. Instr. 75, 2787–2809 (2004).
[CrossRef]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instr. 72, 1810–1816 (2001).
[CrossRef]

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optical elements,” Rev. Sci. Instr. 69, 1974–1977 (1998).
[CrossRef]

Other (1)

Due to total internal reflection of rays at the glass coverslip / water interface, the real NA of the objective (1.45) is reduced to 1.33.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics