Abstract

We demonstrate femtosecond operation of a Nd-doped microstructure fiber laser. The fiber provides gain and anomalous dispersion at the lasing wavelength of 1.06 μm and enables the construction of short and simple cavity designs. The laser is passively mode-locked by the combined action of a saturable absorber mirror, fiber nonlinearity, and dispersion and produces transform limited sub-400-fs pulses with a pulse energy as high as 100 pJ.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, and W. H. Knox, �??Short Cavity Erbium/Ytterbium Fiber Lasers Mode-Locked with a Saturable Bragg Reflector,�?? IEEE J. Sel. Top. Quantum Electron. 3, 1065-75 (1997).
    [CrossRef]
  2. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, �??Ultrashort-pulse fiber ring lasers,�?? Appl. Phys. B 65, 277-94 (1997).
    [CrossRef]
  3. M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, �??Mode locking with cross-phase and self-phase modulation,�?? Opt. Lett. 16, 502-4 (1991).
    [CrossRef] [PubMed]
  4. M. H. Ober, M. Hofer, U. Keller, and T. H. Chiu, �??Self-starting diode-pumped femtosecond Nd fiber laser,�?? Opt. Lett. 18, 1532-4 (1993).
    [CrossRef] [PubMed]
  5. H. Lim, F. �?. Ilday, and F. W. Wise, �??Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser,�?? Opt. Lett. 28, 660-662 (2003).
    [CrossRef] [PubMed]
  6. P. St. J. Russell, �??Photonic Crystal Fibers,�?? Science 299, 358-62 (2003).
    [CrossRef] [PubMed]
  7. L. P. Shen,W. P. Huang, and S. S. Jian, �??Design of Photonic Crystal Fibers for Dispersion-Related Applications,�?? J. Lightwave Technol. 21, 1644-51 (2003).
    [CrossRef]
  8. J. K. Ranka, R. S.Windeler, A. J. Stentz, �??Visible Continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-7 (2000).
    [CrossRef]
  9. H. Lim, F.�?.Ilday, and F.W.Wise, �??Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,�?? Opt. Express 11, 1497-2 (2002), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1497">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1497</a>.
  10. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, �??Totally fiber integrated, figure-of-eight, femtosecond source at 1065 nm,�?? Opt. Express 11, 265-9 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-3-265">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-3-265</a>.
    [CrossRef] [PubMed]
  11. K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, �??Modelocked laser based on Ytterbium doped holey fibre,�?? Electron. Lett. 37, 560-1 (2001).
    [CrossRef]
  12. D. Mogilevtsev, T. A. Birks, P. St. J. Russell, �??Group-velocity dispersion in photonic crystal fibers,�?? Opt. Lett. 23, 1662-4 (1998).
    [CrossRef]
  13. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, �??Semiconductor Saturable Absorber Mirrors (SESAM�??s) for Femtosecond to Nanosecond Pulse Generation in Solid-State-Lasers,�?? IEEE J. Sel. Top. Quantum Electron. 2, 435-53 (1996).
    [CrossRef]
  14. M. Haiml, R. Grange, and U. Keller, �??Optical characterization of semiconductor saturable absorbers,�?? Appl. Phys. B 79, 331-9 (2004).
    [CrossRef]
  15. M. Moenster, P. Glas, G. Steinmeyer, and R. Iliew, �??Mode-locked Nd-doped microstructure fiber laser,�?? Opt. Express 12, 4523-7 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4523">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4523</a>.
    [CrossRef] [PubMed]
  16. S. M. J. Kelly, �??Characteristic sideband instability of periodically amplified average soliton,�?? Electron. Lett. 28, 806-7 (1992).
    [CrossRef]
  17. T. R. Schibli, E. R. Thoen, F. X. Kärtner, E. P. Ippen, �??Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,�?? Appl. Phys. B 70, 41-9 (2000).
    [CrossRef]
  18. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, �??Q-switching stability limits of continous-wave passive mode locking,�?? J. Opt. Soc. Am. B 16, 46-56 (1999).
    [CrossRef]
  19. F. X. Kärtner and U. Keller, �??Stabilization of solitonlike pulses with a slow saturable absorber,�?? Opt. Lett. 20, 16-8 (1995).
    [CrossRef] [PubMed]

Appl. Phys. B (3)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, �??Ultrashort-pulse fiber ring lasers,�?? Appl. Phys. B 65, 277-94 (1997).
[CrossRef]

M. Haiml, R. Grange, and U. Keller, �??Optical characterization of semiconductor saturable absorbers,�?? Appl. Phys. B 79, 331-9 (2004).
[CrossRef]

T. R. Schibli, E. R. Thoen, F. X. Kärtner, E. P. Ippen, �??Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,�?? Appl. Phys. B 70, 41-9 (2000).
[CrossRef]

Electron. Lett. (2)

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, �??Modelocked laser based on Ytterbium doped holey fibre,�?? Electron. Lett. 37, 560-1 (2001).
[CrossRef]

S. M. J. Kelly, �??Characteristic sideband instability of periodically amplified average soliton,�?? Electron. Lett. 28, 806-7 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, and W. H. Knox, �??Short Cavity Erbium/Ytterbium Fiber Lasers Mode-Locked with a Saturable Bragg Reflector,�?? IEEE J. Sel. Top. Quantum Electron. 3, 1065-75 (1997).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, �??Semiconductor Saturable Absorber Mirrors (SESAM�??s) for Femtosecond to Nanosecond Pulse Generation in Solid-State-Lasers,�?? IEEE J. Sel. Top. Quantum Electron. 2, 435-53 (1996).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (6)

Science (1)

P. St. J. Russell, �??Photonic Crystal Fibers,�?? Science 299, 358-62 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) SEM micrograph of the fiber end face as cleaved. (b) Cross section of the two polished fiber end faces (schematically). (c) Laser setup. The blue beam indicates the path of the laser cavity whereas the red beam represents the pump radiation. DM: dichroic mirror (T = 99% at 810 nm, R = 99% at 1054 nm), L1, L2 : aspheric lenses (f = 8 mm, NA = 0.5), P: dichroic glass polarizer, M : output coupling mirror (T = 30% at 1054 nm), Ti:Sa: cw Ti:sapphire pump laser, Nd:MSF: Nd-doped microstructure fiber.

Fig. 2.
Fig. 2.

(a) Measured SAM reflectivity vs. input pulse fluence. The measurement setup was similar to the one described in Ref. [14]. (b) Measured pump-probe response (normalized) of the SAM. The pulse source used for both measurements was a 180-fs passively mode-locked Nd:glass laser tuned to 1060 nm.

Fig. 3.
Fig. 3.

Intensity autocorrelation. The measured data (black rings) have been fitted assuming a sech2 pulse shape (red line). The inset shows the corresponding long-range autocorrelation.

Fig. 4.
Fig. 4.

(a) Optical spectrum of the mode-locked laser (resolution: 0.05 nm). The measured data (black line) has been fitted to the frequency representation of a sech2 pulse spectrum (dash-dotted red line). (b) RF spectrum of the first intermode beat centered at f R ≈ 95 MHz (resolution bandwidth: 100 Hz).

Metrics