Abstract

We report the fabrication and characterization of Ag-As2Se3 strip-loaded waveguides fabricated by the standard lift-off method and photodoping, where Ag-As2Se3 (i.e., Agx(As0.4Se0.6)100-x) is a very promising material for all-optical switching devices because of a high third-order optical nonlinearity. Absorption coefficient of the bulk glasses is also presented for different values of the Ag content x. The addition of Ag into an As2Se3 guiding layer increases its nonlinearity and eliminates or weakens a harmful photo-oxidation reaction of As2Se3 films. The measured propagation loss in the single-mode waveguides with the Ag content x=3 at.% was 0.5 dB/cm at a wavelength of 1.053 μm and was attributable to the absorption loss in the waveguide materials.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. S. Sanghera and I. D. Aggarwal, Eds., Infrared fiber optics (CRC, Boca Raton, 1998).
  2. A. Zakery and S. R. Elliott, �??Optical properties and applications of chalcogenide glasses: a review,�?? J. Non-Cryst. Solids 330, 1-12 (2003).
    [CrossRef]
  3. J. M. Harbold, F. �?. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, �??Highly nonlinear As-S-Se glasses for all-optical switching,�?? Opt. Lett. 27, 119-121 (2002).
    [CrossRef]
  4. K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, and M. Minakata, �??Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching,�?? Opt. Lett. 29, 265-269 (2004).
    [CrossRef] [PubMed]
  5. R. E. Slusher, G. Lenz, J. Hodelin, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, �??Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,�?? J. Opt. Soc. Am. B 21, 1146-1155 (2004).
    [CrossRef]
  6. K. Ogusu, H. Li, and M. Kitao, �??Brillouin-gain coefficients of chalcogenide glasses,�?? J. Opt. Soc. Am. B 21, 1302-1304 (2004).
    [CrossRef]
  7. K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, and H. Li, �??Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films,�?? J. Non-Cryst. Solids 351, 3132-3138 (2005).
    [CrossRef]
  8. R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, �??Direct UV patterning of waveguide devices in As2Se3 thin films,�?? J. Vac. Sci. Technol. A 22, 1044-1047, (2004).
    [CrossRef]
  9. N. Ponnampalam, R. G. DeCorby, H. T. Nguyen, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, �??Small core rib waveguides with embedded grating in As2Se3 glass,�?? Opt. Express 12, 6270-6277 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6270">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6270</a>.
    [CrossRef] [PubMed]
  10. R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, �??High index contrast waveguides in chalcogenide glass and polymer,�?? IEEE J. Sel. Topics Quantum Electron. 11, 539 -546 (2005).
    [CrossRef]
  11. R. Swanepoel, �??Determination of the thickness and optical constants of amorphous silicon,�?? J. Phys. E: Sci. Instrum. 16, 1214-1222 (1983).
    [CrossRef]
  12. M. Kitao, �??Ac conductivity of amorphous As2Se3,�?? Jpn. J. Appl. Phys. 11, 1472 -1479 (1972).
    [CrossRef]
  13. K. Ogusu, T. Kumagai, Y. Fujimori, and M. Kitao, �??Thermal analysis and Raman scattering study on crystallization and structure of Agx(As0.4Se0.6)100-x glasses,�?? J. Non-Cryst. Solids 324, 118-126 (2003).
    [CrossRef]
  14. K. Ogusu, S. Maeda, M. Kitao, H. Li, and M. Minakata, �??Optical and structural properties of Ag(Cu)-As2Se3 chalcogenide films prepared by a photodoping,�?? J. Non-Cryst. Solids 347, 159-165 (2004).
    [CrossRef]
  15. K. Okamoto, Fundamentals of Optical Waveguides (Academics, San Diego, 2000).
  16. K. Ogusu, S. Kawakami, and S. Nishida, �??Optical strip waveguide: an analysis,�?? Appl. Opt. 18, 908-914 (1979); erratum 18, 3725 (1979).
    [CrossRef] [PubMed]
  17. K. Ogusu and I. Tanaka, �??Optical strip waveguide: an experiment,�?? Appl. Opt. 19, 3322-3325 (1980).
    [CrossRef] [PubMed]

Appl. Opt.

IEEE J. Sel. Topics Quantum Electron.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, �??High index contrast waveguides in chalcogenide glass and polymer,�?? IEEE J. Sel. Topics Quantum Electron. 11, 539 -546 (2005).
[CrossRef]

J. Non-Cryst. Solids

A. Zakery and S. R. Elliott, �??Optical properties and applications of chalcogenide glasses: a review,�?? J. Non-Cryst. Solids 330, 1-12 (2003).
[CrossRef]

K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, and H. Li, �??Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films,�?? J. Non-Cryst. Solids 351, 3132-3138 (2005).
[CrossRef]

K. Ogusu, T. Kumagai, Y. Fujimori, and M. Kitao, �??Thermal analysis and Raman scattering study on crystallization and structure of Agx(As0.4Se0.6)100-x glasses,�?? J. Non-Cryst. Solids 324, 118-126 (2003).
[CrossRef]

K. Ogusu, S. Maeda, M. Kitao, H. Li, and M. Minakata, �??Optical and structural properties of Ag(Cu)-As2Se3 chalcogenide films prepared by a photodoping,�?? J. Non-Cryst. Solids 347, 159-165 (2004).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. E: Sci. Instrum.

R. Swanepoel, �??Determination of the thickness and optical constants of amorphous silicon,�?? J. Phys. E: Sci. Instrum. 16, 1214-1222 (1983).
[CrossRef]

J. Vac. Sci. Technol. A

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, �??Direct UV patterning of waveguide devices in As2Se3 thin films,�?? J. Vac. Sci. Technol. A 22, 1044-1047, (2004).
[CrossRef]

Jpn. J. Appl. Phys.

M. Kitao, �??Ac conductivity of amorphous As2Se3,�?? Jpn. J. Appl. Phys. 11, 1472 -1479 (1972).
[CrossRef]

Opt. Express

Opt. Lett.

Other

K. Okamoto, Fundamentals of Optical Waveguides (Academics, San Diego, 2000).

J. S. Sanghera and I. D. Aggarwal, Eds., Infrared fiber optics (CRC, Boca Raton, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Absorption coefficient α of Agx(As0.4Se0.6)100-x bulk glasses as a function of wavelength λ. (a) Ag content x=0-4 at.% , (b) x=15-30 at.%. The absorption loss in dB/cm is given by 4.343 α

Fig. 2.
Fig. 2.

Fabrication process of the strip-loaded waveguides and its cross section.

Fig. 3.
Fig. 3.

SEM images of (a) the end-face of a cleaved strip-loaded waveguide and (b) top view of the same waveguide.

Fig. 4.
Fig. 4.

IR image of a characteristic streak of the scattered light from a strip-loaded waveguide with w=3.0 μm.

Fig. 5.
Fig. 5.

(a) Observed near-field profile from a strip-loaded waveguide with d=1.2, w=3.0 and h=0.1 μm and (b) calculated intensity profile of the E11y mode using a finite-element method.

Fig. 6.
Fig. 6.

Dependence of the relative scattered intensity (in dB) on distance along the waveguide for two values of the strip width w. The straight lines represent best fits to the experimental data. Note that the difference in the scattered intensity between two waveguides has no meaning.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = 1 d ln [ ( 1 R ) 2 T ]

Metrics