Abstract

Supercontinuum generation in large mode-area microstructured fibers is demonstrated by launching into the fiber ns pulses from a passively Q-switched Nd:YAG laser. The special properties of these fibers open the way to compact, single-mode, high-power supercontinuum sources with a low divergence of the output beam. The nonlinear phenomena leading to the formation of the broad spectrum are also described.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. See for instance Nonlinear optics of photonic crystals, Special issue of J. Opt. Soc. Am. B 19, 1961-2296 (2002) or Supercontinuum generation, Special issue of Appl. Phys. B 77, 143-376 (2003).
  2. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, �??Sensing with microstructured optical fibres,�?? Meas. Sci. Technol. 12, 854-858 (2001).
    [CrossRef]
  3. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, R. S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber,�?? Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  4. P. T. Rakich, H. Sotobayashi, J. T. Gopinath, S. G. Johnson, J. W. Sickler, C. W. Wong, J. D. Joannopoulos, and E. P. Ippen, �??Nano-scale photonic crystal microcavity characterization with an all-fiber based 1.2 �?? 2.0 µm supercontinuum,�?? Opt. Express 13, 821-825 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-821">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-821</a>
    [CrossRef] [PubMed]
  5. M. Lehtonen, G. Genty, and H. Ludvigsen, �??Absorption and transmission spectral measurements of fiber-optic components using supercontinuum radiation�??, Appl. Phys. B 81, 231-234 (2005).
    [CrossRef]
  6. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  7. S. Coen, A. Hing Lun Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, �??White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,�?? Opt. Lett. 26, 1356-1358 (2001).
    [CrossRef]
  8. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, �??Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,�?? Opt. Express 12, 299-309 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299</a>
    [CrossRef] [PubMed]
  9. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, �??Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,�?? J. Opt. Soc. Am. B 19, 765-771 (2002).
    [CrossRef]
  10. A. K. Abeeluck, C. Headley, and C. G. Jørgensen, �??High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser,�?? Opt. Lett. 29, 2163- 2165 (2004).
    [CrossRef] [PubMed]
  11. A. K. Abeeluck and C. Headley, �??Supercontinuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode,�?? Appl. Phys. Lett. 85, 4863-4865 (2004).
    [CrossRef]
  12. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, �??Large mode area photonic crystal fibre,�?? Electron. Lett. 34, 1347-1348 (1998).
    [CrossRef]
  13. . M. D. Nielsen, C. Jacobsen, N. A. Mortensen, J. R. Folkenberg, and H. R. Simonsen, �??Low-loss photonic crystal fibers for transmission systems and their dispersion properties,�?? Opt. Express 12, 1372-1376 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1372">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1372</a>
    [CrossRef] [PubMed]
  14. M. D. Nielsen, J. R. Folkenberg, N. A. Mortensen, and A. Bjarklev, �??Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers,�?? Opt. Express 12, 430-435 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-430">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-430</a>
    [CrossRef] [PubMed]
  15. T. Ritari, T. Niemi, M. Wegmuller, N. Gisin, J. R. Folkenberg, A. Pettersson, and H. Ludvigsen, �??Polarization-mode dispersion of large mode-area photonic crystal fibers,�?? Opt. Commun. 226, 233-239 (2003).
    [CrossRef]
  16. M. D. Nielsen and N. A. Mortensen, �??Photonic crystal fiber design based on the V-parameter,�?? Opt. Express 11, 2762-2768 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2762">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2762</a>
    [CrossRef] [PubMed]
  17. D. Yevick and B. Hermansson, �??Efficient beam propagation techniques,�?? IEEE J. Quantum Electron. 26, 109-112 (1990).
    [CrossRef]
  18. T. Sylvestre, H. Maillote, E. Lantz, and P. Tchofo Dinda, �??Raman-assisted parametric frequency conversion in a normally dispersive single-mode fiber,�?? Opt. Lett. 24, 1561-1563 (1999).
    [CrossRef]
  19. R. H. Stolen, C. Lee, and R. K. Jain, �??Development of the stimulated Raman spectrum in single-mode silica fibers,�?? J. Opt. Soc. Am. B 1, 652-657 (1984).
    [CrossRef]
  20. A. K. Abeeluck and C. Headley, �??Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation,�?? Opt. Lett. 30, 61-63 (2005).
    [CrossRef] [PubMed]
  21. N. Bloembergen and Y. R. Shen, �??Coupling between vibrations and light waves in Raman laser media,�?? Phys. Rev. Lett. 12, 504-507 (1964).
    [CrossRef]
  22. E.A. Golovchenko, P. V. Mamyshev, A. N. Pilipestskii, and E. M. Dianov, �??Mutual influence of the parametric effects ans stimulated Raman scattering in optical fibers,�?? IEEE J. Quantum Electron. 26, 1815-1820 (1990).
    [CrossRef]
  23. G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4614">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4614</a>
    [CrossRef] [PubMed]

Appl. Phys. B (1)

M. Lehtonen, G. Genty, and H. Ludvigsen, �??Absorption and transmission spectral measurements of fiber-optic components using supercontinuum radiation�??, Appl. Phys. B 81, 231-234 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

A. K. Abeeluck and C. Headley, �??Supercontinuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode,�?? Appl. Phys. Lett. 85, 4863-4865 (2004).
[CrossRef]

Electron. Lett. (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, �??Large mode area photonic crystal fibre,�?? Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. Yevick and B. Hermansson, �??Efficient beam propagation techniques,�?? IEEE J. Quantum Electron. 26, 109-112 (1990).
[CrossRef]

E.A. Golovchenko, P. V. Mamyshev, A. N. Pilipestskii, and E. M. Dianov, �??Mutual influence of the parametric effects ans stimulated Raman scattering in optical fibers,�?? IEEE J. Quantum Electron. 26, 1815-1820 (1990).
[CrossRef]

J. Opt. Soc. Am B (1)

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, �??Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,�?? J. Opt. Soc. Am. B 19, 765-771 (2002).
[CrossRef]

J. Opt. Soc. Am. B (2)

Meas. Sci. Technol. (1)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, �??Sensing with microstructured optical fibres,�?? Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Opt. Commun. (1)

T. Ritari, T. Niemi, M. Wegmuller, N. Gisin, J. R. Folkenberg, A. Pettersson, and H. Ludvigsen, �??Polarization-mode dispersion of large mode-area photonic crystal fibers,�?? Opt. Commun. 226, 233-239 (2003).
[CrossRef]

Opt. Express (6)

M. D. Nielsen and N. A. Mortensen, �??Photonic crystal fiber design based on the V-parameter,�?? Opt. Express 11, 2762-2768 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2762">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2762</a>
[CrossRef] [PubMed]

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, �??Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,�?? Opt. Express 12, 299-309 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299</a>
[CrossRef] [PubMed]

M. D. Nielsen, J. R. Folkenberg, N. A. Mortensen, and A. Bjarklev, �??Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers,�?? Opt. Express 12, 430-435 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-430">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-430</a>
[CrossRef] [PubMed]

. M. D. Nielsen, C. Jacobsen, N. A. Mortensen, J. R. Folkenberg, and H. R. Simonsen, �??Low-loss photonic crystal fibers for transmission systems and their dispersion properties,�?? Opt. Express 12, 1372-1376 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1372">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1372</a>
[CrossRef] [PubMed]

P. T. Rakich, H. Sotobayashi, J. T. Gopinath, S. G. Johnson, J. W. Sickler, C. W. Wong, J. D. Joannopoulos, and E. P. Ippen, �??Nano-scale photonic crystal microcavity characterization with an all-fiber based 1.2 �?? 2.0 µm supercontinuum,�?? Opt. Express 13, 821-825 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-821">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-821</a>
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4614">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4614</a>
[CrossRef] [PubMed]

Opt. Lett. (6)

Phys. Rev. Lett. (1)

N. Bloembergen and Y. R. Shen, �??Coupling between vibrations and light waves in Raman laser media,�?? Phys. Rev. Lett. 12, 504-507 (1964).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optical microscope images of LMA-10 and LMA-15. Remark: not to scale.

Fig. 2.
Fig. 2.

(a) Dispersion profile of the LMA-MFs. The black, red and blue lines correspond to LMA-10, LMA-15 and LMA-20, respectively. (b) Experimental setup. MO: microscope objective and OSA: optical spectrum analyzer.

Fig. 3.
Fig. 3.

Spectrum (a) and time trace (b) of the pump pulses. Note the slight offset of the OSA wavelength axis. The resolution of the OSA was set to 0.05 nm.

Fig. 4.
Fig. 4.

Supercontinuum generated in LMA-10. Pav: avarage power measured at the fiber output. Inset: Output mode at λ ≈630 nm (taken with a digital camera). The dashed line marks the location of the zero-dispersion wavelength. The peak at 800 nm corresponds the remain of the diode employed to pump the Nd:YAG crystal. The resolution of the OSA was set to 10 nm.

Fig. 5.
Fig. 5.

Spercontinuum generated in LMA-15 and in a standard single-mode fiber (red). Pav: avarage power measured at the fiber output. The dashed lines mark the location of the zero-dispersion wavelength. For clarity, an arbitrary offset has been added to the SC spectrum of the standard single-mode fiber. The peak at 800 nm corresponds to the remain of the diode employed to pump the Nd:YAG crystal. The resolution of the OSA was set to 10 nm. SMF: single-mode fiber.

Fig. 6.
Fig. 6.

Raman lines generated in LMA-20. Pav=35 mW. The dashed line marks the location of the zero-dispersion wavelength. The resolution of the OSA was set to 10 nm.

Tables (1)

Tables Icon

Table 1. Characteristics of the fibers. λZD : zero-dispersion wavelength, γ: nonlinear coefficient (given at 1064 nm), and NA: numerical aperture (given at 1064 nm).

Metrics