Abstract

Focused ion beam milling is a processing technology which allows flexible direct writing of nanometer scale features efficiently substituting electron beam lithography. No mask need results in ability for patterns writing even on fragile micromechanical devices. In this work we studied the abilities of the tool for fabrication of diffraction grating couplers in silicon nitride waveguides. The gratings were fabricated on a chip with extra fragile cantilevers of sub micron thickness. Optical characterization of the couplers was done using excitation of the waveguides in visible range by focused Gaussian beams of different waist sizes. Influence of Ga+ implantation on the device performance was studied.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Wiesmann, C. David, R. Germann, D. Erni, and G. L. Bona, �??Apodized Surface-Corrugated Gratings With Varying Duty Cycles,�?? IEEE Photon. Technol. Lett., 12, 639-642 (2000).
    [CrossRef]
  2. Andrei Y. Smuk and Nabil M. Lawandy, �??Direct laser writing diffractive optics in glass,�?? Opt. Lett. 22, 1030 (1997).
    [CrossRef] [PubMed]
  3. N. Destouches, A. V. Tishchenko, J. C. Pommier, S. Reynaud, O. Parriaux, S. Tonchev, M. Abdou Ahmed, �??99% efficiency measured in the -1st order of a resonant grating,�?? Opt. Express 13, 3230-3235 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3230">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3230<a/>
    [CrossRef] [PubMed]
  4. Darren Freeman, and Barry Luther-Davis, �??Fabrication of planar photonic crystals in chalcogenide glass using a focused ion beam,�?? Opt. Express 13, 3079-3086 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3079">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3079</a>
    [CrossRef] [PubMed]
  5. Yongqi Fu, Ngoi Kok Ann Bryan, and Wei Zhou, �??Self-organized formation of Blazed-grating-like structure on Si(100) induced by focused ion beam scanning,�?? Opt. Express 12, 227-233 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-227">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-227</a>
    [CrossRef] [PubMed]
  6. Yongqi Fu, Ngoi Kok Ann Bryan, and Wei Zhou, �??Quasi-direct writing of diffractive structures with a focused ion beam,�?? Opt. Express 12, 1803-1809 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1803">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1803</a>
    [CrossRef] [PubMed]
  7. V. G. Ta�??eed, D. J. Moss, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc and B. Luther-Davies, S. Janz, D.-X. Xu, �??Bragg gratings in silicon-on-insulator waveguides by focused ion beam milling,�?? Appl. Phys. Lett. 85, 4860-4862 (2004)
    [CrossRef]
  8. Ampere A Tseng, �??Recent developments in micromilling using focused ion beam technology,�?? J. Micromech. Microeng. 14, R15-R34 (2004).
    [CrossRef]
  9. R.Petit, �??Electromagnetic Theory of gratings,�?? (Springer Berlag, Berlin 1980).
  10. W. Streifer, R.D. Burnham, and D.R. Scifres, �??Analysis of grating coupled radiation in GaAs:GaAlAs lasers and waveguides,�?? IEEE J. Quantum Electron. QE-12, 422-428 (1976)
    [CrossRef]
  11. John C. Brazas, Lifeng Li, �??Analysis of input grating couplers having finite lengths,�?? Appl. Opt. 34, 3786-3792 (1995)
    [CrossRef] [PubMed]
  12. Lifeng Li Mool C.Gupta, �??Effects of beam focusing on the efficiency of planar grating couplers,�?? Appl. Opt. 29, 5320-5325 (1990).
    [CrossRef] [PubMed]
  13. N. Eriksson, M. Hagberg, A. Larson, �??Highly Directional Grating OutCouplers with Tailorable Radiation Characteristics,�?? IEEE J. Quantum Electron. 32, 1038-1047 (1996)
    [CrossRef]
  14. Yongqi Fu, N.K.A. Brayan, �??Investigation of physical properties of quartz after focused ion beam bombardment,�?? Appl. Phys. B 80, 581�??585, (2005).
    [CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

Yongqi Fu, N.K.A. Brayan, �??Investigation of physical properties of quartz after focused ion beam bombardment,�?? Appl. Phys. B 80, 581�??585, (2005).
[CrossRef]

Appl. Phys. Lett. (1)

V. G. Ta�??eed, D. J. Moss, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc and B. Luther-Davies, S. Janz, D.-X. Xu, �??Bragg gratings in silicon-on-insulator waveguides by focused ion beam milling,�?? Appl. Phys. Lett. 85, 4860-4862 (2004)
[CrossRef]

IEEE J. Quantum Electron. (2)

W. Streifer, R.D. Burnham, and D.R. Scifres, �??Analysis of grating coupled radiation in GaAs:GaAlAs lasers and waveguides,�?? IEEE J. Quantum Electron. QE-12, 422-428 (1976)
[CrossRef]

N. Eriksson, M. Hagberg, A. Larson, �??Highly Directional Grating OutCouplers with Tailorable Radiation Characteristics,�?? IEEE J. Quantum Electron. 32, 1038-1047 (1996)
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Wiesmann, C. David, R. Germann, D. Erni, and G. L. Bona, �??Apodized Surface-Corrugated Gratings With Varying Duty Cycles,�?? IEEE Photon. Technol. Lett., 12, 639-642 (2000).
[CrossRef]

J. Micromech. Microeng. (1)

Ampere A Tseng, �??Recent developments in micromilling using focused ion beam technology,�?? J. Micromech. Microeng. 14, R15-R34 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Other (1)

R.Petit, �??Electromagnetic Theory of gratings,�?? (Springer Berlag, Berlin 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Excitation of the waveguide by out of plane incident beam with diameter w

Fig. 2.
Fig. 2.

(a) A photograph of a chip with waveguides and cantilevers (the waveguides in the cavities are the cantilevers of sub-micron thickness). (b) A magnified photo of the chip area with gratings (marked by the frame in fig. 2(a)). The gratings are 40×40 μm2 in size

Fig. 3.
Fig. 3.

(a) The profile of the grating 1 obtained with AFM. (b) The spatial spectrum obtained by Fourier transform of the profile.

Fig. 4.
Fig. 4.

(a) Schematic view of the experiment. (b) Measured coupling efficiencies of the DGCs versus incident beam spot size.

Fig. 5.
Fig. 5.

Optimised coupling length versus corrugation depth for the grating couplers.

Fig. 6.
Fig. 6.

Normalised depth profile of Ga inside the coupler.

Tables (1)

Tables Icon

Table 1. Parameters of the diffraction grating couplers

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

dP ( x ) dx = A ( x ) η P ( x ) α rad P ( x ) α abs

Metrics