Abstract

We present experimental results on the suppression of a complete Raman cascade in a holey fiber by using gain competition with parametric processes. The modulation instabilities which strongly affect the stimulated Raman scattering (SRS) gain are induced by two pump wavelengths (532 nm, 1064 nm) placed far and quasi symmetrically on each side of the zero dispersion wavelength (ZDW) of the fiber (790 nm). The competition between these two nonlinear effects takes place in large normal dispersion regime. We experimentally determinate the quantity of energy needed at each pump wavelength to obtain total suppression of the SRS and we evaluate the sensitivity of this effect with respect to the ZDW position.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. H. Stolen, M. A. Bösch and C. Lin, �??Phase matching in birefringent fibers,�?? Opt. Lett. 6, 213-215 (1981).
    [CrossRef] [PubMed]
  2. M. Nakazawa, T. Nakashima and S. Seikai, �??Raman amplification in 1.4-1.5-µm spectral region in polarization-preserving optical fibers,�?? J. Opt. Soc. Am. B 2, 515-521 (1985).
    [CrossRef]
  3. J. K. Chee and J. M. Liu, �??Raman-assisted parametric frequency and polarization conversion in a birefringent fiber,�?? Opt. Lett. 14, 820-822 (1989).
    [CrossRef] [PubMed]
  4. J. K. Chee and J. M. Liu, �??Polarization-dependent parametric and Raman processes in a birefringent optical fiber,�?? IEEE J. Quantum Electron. 26, 541-549 (1990).
    [CrossRef]
  5. T. Yang and P. Gao, �??Stimulated four-photon mixing with crossed pump dividing in an optical fiber,�?? Opt. Lett. 15, 1002-1004 (1990).
    [CrossRef] [PubMed]
  6. S. Trillo and S. Wabnitz, �??Parametric and Raman amplification in birefringent fibers,�?? J. Opt. Soc. Am. B 9, 1061-1082 (1992).
    [CrossRef]
  7. P. Tchofo Dinda, G. Millot and S. Wabnitz, �??Polarization switching and suppression of stimulated Raman scattering in birefringent optical fibers,�?? J. Opt. Soc. Am. B 15, 1433-1441 (1998).
    [CrossRef]
  8. P. V. Mamyshev, A. P. Vertikov and A. M. Prokhorov, �??Switching of the frequency shift of stimulated Raman scattering caused by parametric interaction in optical fibres,�?? Sov. Lightwave Commun. 2, 73-77 (1992).
  9. A. P. Vertikov and P. V. Mamyshev, �??Mixed-mode and single-mode types of parametric suppression of stimulated Raman scattering in birefringent fibres,�?? Sov. Lightwave Commun. 2, 119-124 (1992).
  10. Y. R. Shen and N. Bloembergen, �??Theory of stimulated Brillouin and Raman scattering,�?? Phys. Rev. 137, A1787-A1805 (1965).
    [CrossRef]
  11. E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii and E. M. Dianov, �??Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,�?? IEEE J. Quantum Electron. 26, 1815-1820 (1990).
    [CrossRef]
  12. S. Pitois, G. Millot and P. Tchofo Dinda, �??Influence of parametric four-wave mixing effects on stimulated Raman scattering in bimodal optical fibers,�?? Opt. Lett. 23, 1456-1458 (1998).
    [CrossRef]
  13. P. Tchofo Dinda, G. Millot and S. Wabnitz, �??Polarization switching of stimulated Raman scattering in optical fibers by dual-frequency pumping,�?? Opt. Lett. 22, 1595-1597 (1997).
    [CrossRef]
  14. T. Sylvestre, H. Maillotte and E. Lantz, �??Stimulatted Raman suppression under dual frequency pumping in singlemode fibres,�?? Electron. Lett. 34, 1417-1418 (1998).
    [CrossRef]
  15. T. Sylvestre, H. Maillotte, P. Tchofo Dinda and E. Coquet, �??Suppression of stimulated Raman scattering in optical fibres by power-controlled multifrequency pumping,�?? Opt. Comm. 156, 32-36 (1999).
    [CrossRef]
  16. P. Tchofo Dinda, S. Wabnitz, E. Coquet, T. Sylvestre, H. Maillotte and E. Lantz, �??Demonstration of stimulated-Raman-scattering suppression in optical fibers in a multifrequency pumping configuration,�?? J. Opt. Soc. Am. B 16, 757-767 (1999).
    [CrossRef]
  17. P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly and P. Nérin, �??White-light supercontinuum generation in normally dispersive optical fiber using original multiwavelength pumping system,�?? Opt. Express 12, 4366-4371 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4366.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4366</a>
    [CrossRef] [PubMed]

Electron. Lett. (1)

T. Sylvestre, H. Maillotte and E. Lantz, �??Stimulatted Raman suppression under dual frequency pumping in singlemode fibres,�?? Electron. Lett. 34, 1417-1418 (1998).
[CrossRef]

IEEE J. Quantum Electron. (2)

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii and E. M. Dianov, �??Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,�?? IEEE J. Quantum Electron. 26, 1815-1820 (1990).
[CrossRef]

J. K. Chee and J. M. Liu, �??Polarization-dependent parametric and Raman processes in a birefringent optical fiber,�?? IEEE J. Quantum Electron. 26, 541-549 (1990).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Comm. (1)

T. Sylvestre, H. Maillotte, P. Tchofo Dinda and E. Coquet, �??Suppression of stimulated Raman scattering in optical fibres by power-controlled multifrequency pumping,�?? Opt. Comm. 156, 32-36 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. (1)

Y. R. Shen and N. Bloembergen, �??Theory of stimulated Brillouin and Raman scattering,�?? Phys. Rev. 137, A1787-A1805 (1965).
[CrossRef]

Sov. Lightwave Commun. (2)

P. V. Mamyshev, A. P. Vertikov and A. M. Prokhorov, �??Switching of the frequency shift of stimulated Raman scattering caused by parametric interaction in optical fibres,�?? Sov. Lightwave Commun. 2, 73-77 (1992).

A. P. Vertikov and P. V. Mamyshev, �??Mixed-mode and single-mode types of parametric suppression of stimulated Raman scattering in birefringent fibres,�?? Sov. Lightwave Commun. 2, 119-124 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup.

Fig 2.
Fig 2.

Chromatic dispersion curve (left) and effective area (right) of the fundamental transverse mode of the fiber versus wavelength. Inset: cross sectional scanning electron microscope image of the microstructured air-silica fiber.

Fig. 3.
Fig. 3.

Photograph and profile of the generated output spectrum. Six Stokes components are visible with an input peak power of ~ 300 W at 532 nm.

Fig. 4.
Fig. 4.

Experimental results showing the Raman cascade suppression according to the increase of the infrared pump peak power (1064 nm) for a fixed input level at 532 nm (300 W peak power). Photograph of the phenomenon (diffracted output beam) (a); Spectrum profile of the visible continuum (b); Spectrum evolution of the infrared continuum (c).

Fig. 5.
Fig. 5.

Evolution of the visible spectrum versus the green (532 nm) pump peak power for a fixed input peak power of the infrared pump (~ 1000 W).

Metrics