Abstract

A multispectral microscopy imaging system is developed for the single-particle scattering spectroscopy of many individual plasmonic nanostructures simultaneously. The system dispenses with the need for the mechanical scanning of sample stage and thus enables high-speed plasmon resonance imaging of nanostructure arrays. The darkfield scattering intensity images of nanoplasmonic structures at individual wavelengths are acquired with a spectral resolution of 2 nm in the wavelength range from 500 nm to 800 nm, and a frame rate of 2 seconds/wavelength. The images are processed afterwards and the plasmon resonance wavelength of every nanostructure within the field of view can be obtained at once. The plasmon resonance wavelengths of more than 1000 Au colloidal nanoparticles and a nanofabricated Au nanowire array are measured within 5 minutes. The presented high-speed spectral imaging system promises the practical application of large-scale high-density nanoplasmonic sensor arrays for label-free biomolecular detections in the near future.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Karlsson, �??SPR for molecular interaction analysis: a review of merging application areas,�?? J. Mol. Recognition 17, 151-161 (2004).
    [CrossRef]
  2. J. S. Shumaker-Parry, R. Aebersold, and C. T. Campbell, �??Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy,�?? Anal. Chem. 76, 2071-2082 (2004)
    [CrossRef] [PubMed]
  3. M. Piliarik, H. Vaisocherova, and J. Homola, �??A new surface plasmon resonance sensor for high-throughput screening applications,�?? Biosens. Bioelectron. 20, 2104-2110 (2005)
    [CrossRef] [PubMed]
  4. D. R. Rhodes, J. Yu, K. Shanker, N. Deshpande, R. Varambally, D. Ghosh, T. Barrette, A. Pandey, and A. M. Chinnaiyan, �??Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression,�?? P. Natl. Acad. Sci. USA 101, 9309-9314 (2004)
    [CrossRef]
  5. A.D. McFarland, and R.P. Van Duyne, �??Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,�?? Nano Lett. 3, 1057-1062 (2003)
    [CrossRef]
  6. G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, �??Biomolecular recognition based on single gold nanoparticle light scattering,�?? Nano Lett 3, 935-938 (2003).
    [CrossRef]
  7. S.J. Oldenburg, C.C.Genick, K.A. Clark, and D.A. Schultz, �??Base pair mismatch recognition using plasmon resonant particle labels,�?? Anal. Biochem. 309, 109-116 (2002).
    [CrossRef] [PubMed]
  8. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, �??Drastic reduction of plasmon damping in gold nanorods,�?? Phys. Rev. Lett. 88, 077402 (2002)
    [CrossRef] [PubMed]
  9. T. Itoh, K. Hashimoto, and Y. Ozaki, �??Polarization dependences of surface plasmon bands and surface-enhanced Raman bands of single Ag nanoparticles,�?? Appl. Phys. Lett. 83, 2274-2276 (2003)
    [CrossRef]
  10. C. Sonnichsen, B. M. Reinhard, J. Liphardt and A. P. Alivisatos, �??A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,�?? Nat. Biotechnol. 23, 741-745 (2005)

Anal. Biochem. (1)

S.J. Oldenburg, C.C.Genick, K.A. Clark, and D.A. Schultz, �??Base pair mismatch recognition using plasmon resonant particle labels,�?? Anal. Biochem. 309, 109-116 (2002).
[CrossRef] [PubMed]

Anal. Chem. (1)

J. S. Shumaker-Parry, R. Aebersold, and C. T. Campbell, �??Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy,�?? Anal. Chem. 76, 2071-2082 (2004)
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

T. Itoh, K. Hashimoto, and Y. Ozaki, �??Polarization dependences of surface plasmon bands and surface-enhanced Raman bands of single Ag nanoparticles,�?? Appl. Phys. Lett. 83, 2274-2276 (2003)
[CrossRef]

Biosens. Bioelectron. (1)

M. Piliarik, H. Vaisocherova, and J. Homola, �??A new surface plasmon resonance sensor for high-throughput screening applications,�?? Biosens. Bioelectron. 20, 2104-2110 (2005)
[CrossRef] [PubMed]

J. Mol. Recognition (1)

R. Karlsson, �??SPR for molecular interaction analysis: a review of merging application areas,�?? J. Mol. Recognition 17, 151-161 (2004).
[CrossRef]

Nano Lett (1)

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, �??Biomolecular recognition based on single gold nanoparticle light scattering,�?? Nano Lett 3, 935-938 (2003).
[CrossRef]

Nano Lett. (1)

A.D. McFarland, and R.P. Van Duyne, �??Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,�?? Nano Lett. 3, 1057-1062 (2003)
[CrossRef]

Nat. Biotechnol. (1)

C. Sonnichsen, B. M. Reinhard, J. Liphardt and A. P. Alivisatos, �??A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,�?? Nat. Biotechnol. 23, 741-745 (2005)

P. Natl. Acad. (1)

D. R. Rhodes, J. Yu, K. Shanker, N. Deshpande, R. Varambally, D. Ghosh, T. Barrette, A. Pandey, and A. M. Chinnaiyan, �??Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression,�?? P. Natl. Acad. Sci. USA 101, 9309-9314 (2004)
[CrossRef]

Phys. Rev. Lett. (1)

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, �??Drastic reduction of plasmon damping in gold nanorods,�?? Phys. Rev. Lett. 88, 077402 (2002)
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Configuration of the multispectral imaging system for the scattering spectra measurement of nanoplasmonic arrays.

Fig. 2.
Fig. 2.

(a) True-color scattering image of thousands of dispersed Au nanoparticles. For the clarity of the image, a field of 100 μm × 100 μm is cropped from the whole view field of ~ 300 μm × 300 μm. The lower picture is the zoom-in image from the marked area (square) of the upper image. (b) and (c) show the scattering intensity image of the same Au nanoparticles as in (a) with 550 nm and 630 nm monochromatic illumination, respectively. (d) Scattering spectra of three representative particles marked as 1, 2 and 3 respectively in the images.

Fig. 3.
Fig. 3.

The scanning electron micrograph (a), true-color scattering image (b), and scattering intensity images with 570 nm (c) and 650 nm (d) monochromatic illumination of an Au nanowire array. All scale bars stand for 1μm. (e) Scattering spectra of three representative Au nanowires.

Metrics