Abstract

We demonstrate that frequency-converting devices of high quality can be realised with glass poling. The devices, made with silica-on-silicon technology, are poled with periodic, embedded electrodes, and used for second-harmonic generation. We obtain precise control of the quasi phase-matching wavelength and bandwidth, and a normalised conversion efficiency of 1.4 × 10-3 %/W/cm2 which, to our knowledge, is the highest obtained so far with periodic glass poling.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Myers, N. Mukherjee, and S. Brueck, �??Large second-order nonlinearity in poled fused silica,�?? Opt. Lett. 16, 1732�??4 (1991).
    [CrossRef] [PubMed]
  2. A. Kudlinski, G. Martinelli, and Y. Quiquempois, �??Time evolution of second-order nonlinear profiles induced within thermally poled silica samples,�?? Opt. Lett. 30, 1039�??1041 (2005).
    [CrossRef] [PubMed]
  3. D. Faccio, V. Pruneri, and P. Kazansky, �??Dynamics of the second-order nonlinearity in thermally poled silica glass,�?? Appl. Phys. Lett. 79, 2687�??9 (2001).
    [CrossRef]
  4. A. Ozcan, M. Digonnet, G. Kino, F. Ay, and A. Aydinli, �??Characterization of thermally poled germanosilicate thin films,�?? Opt. Express 12, 4698�??4708 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4698">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4698</a>.
    [CrossRef] [PubMed]
  5. J. Fage-Pedersen, R. Jacobsen, and M. Kristensen, �??Glass Waveguides for Periodic Poling,�?? in Bragg Gratings, Poling, and Photosensitivity (BGPP), Sydney, Australia, July 2005, paper no. 69.
  6. V. Pruneri, G. Bonfrate, P. Kazansky, D. Richardson, N. Broderick, J. De Sandro, C. Simonneau, P. Vidakovic, and J. Levenson, �??Greater than 20%-efficient frequency doubling of 1532-nm nanosecond pulses in quasi-phase-matched germanosilicate optical fibers,�?? Opt. Lett. 24, 208�??10 (1999).
    [CrossRef]
  7. H.-Y. Chen, C.-L. Lin, Y.-H. Yang, S. Chao, H. Niu, and C. T. Shih, �??Creation of second-order nonlinearity and quasi-phase-matched second-harmonic generation in Ge-implanted fused silica planar waveguide,�?? Appl. Phys. Lett. 86, 81,107 (2005).
  8. R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. Mckee, �??Phase-matched second-harmonic generation by periodic poling of fused silica,�?? Appl. Phys. Lett. 64, 1332�??1334 (1994).
    [CrossRef]
  9. H.-Y. Chen, J.-S. Sue, Y.-H. Lin, and S. Chao, �??Quasi-phase-matched second-harmonic generation in ultraviolet-assisted periodically poled planar fused silica,�?? Opt. Lett. 28, 917�??919 (2003).
    [CrossRef] [PubMed]
  10. Y. Ren, C. Marckmann, R. Jacobsen, and M. Kristensen, �??Poling effect of a charge-trapping layer in glass waveguides,�?? Appl. Phys. B 78, 371�??375 (2004).
    [CrossRef]
  11. U. Krieger and W. Lanford, �??Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial sodalime glass I: Experimental,�?? J. Non-Cryst. Sol. 102, 50�??61 (1988).
    [CrossRef]
  12. T. G. Alley and R. A. Myers, �??Space charge dynamics in thermally poled fused silica,�?? J. Non-Cryst. Sol. 242, 165�??176 (1998).
    [CrossRef]
  13. M. Severi and M. Impronta, �??Charge trapping in thin nitrided SiO2 films,�?? Appl. Phys. Lett. 51, 1702�??4 (1987).
    [CrossRef]
  14. Y. Luo, A. Biswas, A. Frauenglass, and S. Brueck, �??Large second-harmonic signal in thermally0poled lead glass-silica waveguides,�?? Appl. Phys. Lett. 84, 4935�??4937 (2004).
    [CrossRef]
  15. J. Arentoft, M. Kristensen, K. Pedersen, S. Bozhevolnyi, and P. Shi, �??Poling of silica with silver-containing electrodes,�?? Electron. Lett. 36, 1635�??1636 (2000).
    [CrossRef]
  16. J. Fage-Pedersen, M. Kristensen, and J. Beerman, �??Poling of glass waveguides by a metal-induced Χ(3) enhancement,�?? in Lasers and Electro-Optics Europe (CLEO/Europe), Munich, Germany, June 2003, p. 213 (IEEE, 2003).

Appl. Phys. B

Y. Ren, C. Marckmann, R. Jacobsen, and M. Kristensen, �??Poling effect of a charge-trapping layer in glass waveguides,�?? Appl. Phys. B 78, 371�??375 (2004).
[CrossRef]

Appl. Phys. Lett.

M. Severi and M. Impronta, �??Charge trapping in thin nitrided SiO2 films,�?? Appl. Phys. Lett. 51, 1702�??4 (1987).
[CrossRef]

Y. Luo, A. Biswas, A. Frauenglass, and S. Brueck, �??Large second-harmonic signal in thermally0poled lead glass-silica waveguides,�?? Appl. Phys. Lett. 84, 4935�??4937 (2004).
[CrossRef]

D. Faccio, V. Pruneri, and P. Kazansky, �??Dynamics of the second-order nonlinearity in thermally poled silica glass,�?? Appl. Phys. Lett. 79, 2687�??9 (2001).
[CrossRef]

H.-Y. Chen, C.-L. Lin, Y.-H. Yang, S. Chao, H. Niu, and C. T. Shih, �??Creation of second-order nonlinearity and quasi-phase-matched second-harmonic generation in Ge-implanted fused silica planar waveguide,�?? Appl. Phys. Lett. 86, 81,107 (2005).

R. Kashyap, G. J. Veldhuis, D. C. Rogers, and P. F. Mckee, �??Phase-matched second-harmonic generation by periodic poling of fused silica,�?? Appl. Phys. Lett. 64, 1332�??1334 (1994).
[CrossRef]

Bragg Gratings, Poling and Photosen. 05

J. Fage-Pedersen, R. Jacobsen, and M. Kristensen, �??Glass Waveguides for Periodic Poling,�?? in Bragg Gratings, Poling, and Photosensitivity (BGPP), Sydney, Australia, July 2005, paper no. 69.

CLEO Europe 2003

J. Fage-Pedersen, M. Kristensen, and J. Beerman, �??Poling of glass waveguides by a metal-induced Χ(3) enhancement,�?? in Lasers and Electro-Optics Europe (CLEO/Europe), Munich, Germany, June 2003, p. 213 (IEEE, 2003).

Electron. Lett.

J. Arentoft, M. Kristensen, K. Pedersen, S. Bozhevolnyi, and P. Shi, �??Poling of silica with silver-containing electrodes,�?? Electron. Lett. 36, 1635�??1636 (2000).
[CrossRef]

J. Non-Cryst. Sol.

U. Krieger and W. Lanford, �??Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial sodalime glass I: Experimental,�?? J. Non-Cryst. Sol. 102, 50�??61 (1988).
[CrossRef]

T. G. Alley and R. A. Myers, �??Space charge dynamics in thermally poled fused silica,�?? J. Non-Cryst. Sol. 242, 165�??176 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of a chip with QPM devices. In this example, the chip contains three waveguides with different QPM periods.

Fig. 2.
Fig. 2.

SH intensity as a function of pump wavelength for a 3-mm long device.

Fig. 3.
Fig. 3.

Centre wavelength vs. electrode period for different devices on the same chip.

Fig. 4.
Fig. 4.

Normalised conversion efficiency ηN as a function of poling temperature for different poling voltages. The poling duration was 15 minutes. The devices in the ’#504’ series have slightly optimised design relative to those in the ’#404’ series (thinner top cladding and core layer, and thicker buffer layer). The dashed line is a guide to the eye.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P 2 ω = 2 π 2 c ε 0 1 λ 2 n ω 2 n 2 ω ( χ expl ( 2 ) ) 2 P ω 2 L 2 A ovl ( sin [ 1 2 Δ k ' L ] 1 2 Δ k ' L ) 2

Metrics