Abstract

We report an experimental and theoretical investigation of the nonlinear transmission coefficient of a heavily doped (2300 ppm) Erbium silica fiber at continuous-wave pumping at the wavelength 1560 nm. It is shown that the fiber transmission is essentially deteriorated by the nonlinear losses, which are caused by the excited-state absorption (ESA) and Erbium ion pairs (IP) presented in the fiber. These phenomena inevitably result in worsening of the amplifying and lasing potential of the heavily doped Erbium fiber. We demonstrate the latter on the example of an Erbium fiber laser (wavelength, λ = 1560 nm) under IR (wavelength, λ = 978 nm) pumping, where the heavily doped Erbium fiber is used as an active medium. The developed theory, addressing both the nonlinear transmission coefficient of the fiber at the 1560-nm pumping and the generation characteristics of the Erbium fiber laser, takes into account the additional losses and non-radiative relaxation factors stemming from the ESA- and IP-effects and allows getting a good agreement between the modeling and experimental results.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. J. F. Digonnet (Ed.), Rare Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, 1993).
  2. E. Desurvire, Erbium-Doped Fiber Amplifiers. Principles and Applications (Wiley, 1994).
  3. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).
  4. F. Sanchez, P. le Boudec, P. L. Francois, and G. Stephan, �??Effects of ion pairs on the dynamics of erbium-doped fiber lasers,�?? Phys. Rev. A 48, 2220-2229 (1993).
    [CrossRef] [PubMed]
  5. E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, �??Modeling of pair-induced quenching in erbium-doped silicate fibers,�?? IEEE Photonics Technol. Lett. 5, 73-75 (1993).
    [CrossRef]
  6. P. Myslinski, D. Nguen, and J. Chrostowski, �??Effects of concentration on the performance of erbium-doped fiber amplifiers,�?? IEEE J. Lightwave Technol. 15, 112-120 (1997).
    [CrossRef]
  7. A. Yu. Plotskii, A. S. Kurkov, M. Yu. Yashkov, M. M. Bubnov, M. E. Likhachev, A. A. Sysolyatin, A. N. Gur�??yanov, and E. M. Dianov, �??Amplyfying properties of heavily erbium-doped active fibres,�?? Quantum Electron. 35, 559-562 (2005).
    [CrossRef]
  8. R. Rangel-Rojo and M. Mohebi, �??Study of the onset of self-pulsing behaviour in an Er-doped fibre laser,�?? Opt. Commun. 137, 98-102 (1997).
    [CrossRef]
  9. S. Colin, E. Contesse, P. Le Boudec, G. Stephan, and F. Sanchez, �??Evidence of a saturable-absorption effect in heavily erbium-doped fibers,�?? Opt. Lett. 21, 1987-1989 (1996).
    [CrossRef] [PubMed]
  10. J. L. Wagener, P. F. Wycsocki, M. J. F. digonnet, H. J. Shaw, and D. J. DiGiovanni, �??Effects of concentration and clusters in erbium-doped fiber lasers,�?? Opt. Lett. 18, 2014-2016 (1993).
    [CrossRef] [PubMed]
  11. J. L. Wagener, P. F. Wycsocki, M. J. F. digonnet, and H. J. Shaw, �??Modeling of ion pairs in erbium-doped fiber amplifiers,�?? Opt. Lett. 19, 347-349 (1994).
    [CrossRef] [PubMed]
  12. Yu. O. Barmenkov, A. V. Kir�??yanov, and M. V. Andres, �??Resonant and thermal changes of refractive index in a heavily doped erbium fiber pumped at wavelength 980 nm,�?? Appl. Phys. Lett. 85, 2466-2468 (2004).
    [CrossRef]
  13. N. V. Nikanorov, A. K. Przhevuskii, and A. V. Chukharev, �??Characterization of non-linear upconversion quenching in Er-doped glasses: modeling and experiment,�?? J. Non-Cryst. Solids 324, 92-108 (2003).
    [CrossRef]
  14. S. G. Cruz-Vicente, M. A. Martinez-Gamez, A. V. Kir�??yanov, Yu. O. Barmenkov, and M. V. Andres, �??Self-Q-switched diode-pumped all-fiber Erbium laser,�?? Quantum Electron. 34, 310-314 (2004).
    [CrossRef]
  15. A. O. Nielsen, J. H. Povlsen, A. Bjarklev, O. Lumholt, T. P. Rasmussen, and K. Rottwitt, �??Fast method for accurate prediction of fibre laser oscillation wavelength,�?? Electron. Lett. 27, 1644-1645 (1991).
    [CrossRef]
  16. J. Chen, X. Zhu, and W. Sibbert, �??Rate-equation studies of erbium-doped fiber lasers with common pump and laser energy bands,�?? J. Opt. Soc. Am. B 9, 1876-1882 (1992).
    [CrossRef]
  17. C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, �??Analytical model for rare-earth-doped fiber amplifiers and lasers,�?? IEEE J. Quantum Electron. 30, 1817-1829 (1994).
    [CrossRef]
  18. A. Escuer, S. Jarabo, and J. M. Alvarez, �??Analysis of theoretical models for erbium-doped silica fibre lasers,�?? Opt. Commun. 187, 107-123 (2001).
    [CrossRef]
  19. A. V. Kir�??yanov, V. N. Filippov, and A. N. Starodumov, �??Cw-pumped erbium-doped fiber laser passively Q-switched with Co2+:ZnSe crystal: modeling and experimental study,�?? J. Opt. Soc. Am. B 19, 353-359 (2002).
    [CrossRef]
  20. A. Escuer, S. Jarabo, and J. M. Alvarez, �??Experimental characterization, optimization, and design of erbium-doped silica fibre lasers,�?? Appl. Phys. B 80, 449-457 (2005).
    [CrossRef]
  21. A. V. Kir�??yanov, N. N. Il�??ichev, and Yu. O. Barmenkov, �??Excited-state absorption as a source of nonlinear thermo-induced lensing and self-Q-switching in an all-fiber Erbium laser,�?? Laser Phys. Lett. 1, 194-198 (2004).
    [CrossRef]
  22. S. Stepanov and E. Hernandez, �??Observation of spatial migration of excitation in Er-doped optical fibers by means of a population grating technique,�?? Opt. Lett. 30, 1926-1928 (2005).
    [CrossRef] [PubMed]
  23. E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, �??Clustering induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers,�?? Opt. Lett. 20, 2487-2489 (1995).
    [CrossRef] [PubMed]
  24. E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, �??Clustering effects on double energy transfer in heavily ytterbium-erbium-codoped silica fibers,�?? J. Opt. Soc. Am. B 13, 693-701 (1996).
    [CrossRef]
  25. B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, �??Optical and structural analysis of neodymium-doped silica-based optical fibre,�?? Mater. Lett. 8, 204-208 (1989).
    [CrossRef]

Appl. Phys. B.

A. Escuer, S. Jarabo, and J. M. Alvarez, �??Experimental characterization, optimization, and design of erbium-doped silica fibre lasers,�?? Appl. Phys. B 80, 449-457 (2005).
[CrossRef]

Appl. Phys. Lett.

Yu. O. Barmenkov, A. V. Kir�??yanov, and M. V. Andres, �??Resonant and thermal changes of refractive index in a heavily doped erbium fiber pumped at wavelength 980 nm,�?? Appl. Phys. Lett. 85, 2466-2468 (2004).
[CrossRef]

Electron. Lett.

A. O. Nielsen, J. H. Povlsen, A. Bjarklev, O. Lumholt, T. P. Rasmussen, and K. Rottwitt, �??Fast method for accurate prediction of fibre laser oscillation wavelength,�?? Electron. Lett. 27, 1644-1645 (1991).
[CrossRef]

IEEE J. Lightwave Technol.

P. Myslinski, D. Nguen, and J. Chrostowski, �??Effects of concentration on the performance of erbium-doped fiber amplifiers,�?? IEEE J. Lightwave Technol. 15, 112-120 (1997).
[CrossRef]

IEEE J. Quantum Electron.

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, �??Analytical model for rare-earth-doped fiber amplifiers and lasers,�?? IEEE J. Quantum Electron. 30, 1817-1829 (1994).
[CrossRef]

IEEE Photonics Technol. Lett.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, �??Modeling of pair-induced quenching in erbium-doped silicate fibers,�?? IEEE Photonics Technol. Lett. 5, 73-75 (1993).
[CrossRef]

J. Non-Cryst. Solids

N. V. Nikanorov, A. K. Przhevuskii, and A. V. Chukharev, �??Characterization of non-linear upconversion quenching in Er-doped glasses: modeling and experiment,�?? J. Non-Cryst. Solids 324, 92-108 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Laser Phys. Lett.

A. V. Kir�??yanov, N. N. Il�??ichev, and Yu. O. Barmenkov, �??Excited-state absorption as a source of nonlinear thermo-induced lensing and self-Q-switching in an all-fiber Erbium laser,�?? Laser Phys. Lett. 1, 194-198 (2004).
[CrossRef]

Mater. Lett.

B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, �??Optical and structural analysis of neodymium-doped silica-based optical fibre,�?? Mater. Lett. 8, 204-208 (1989).
[CrossRef]

Opt. Commun.

A. Escuer, S. Jarabo, and J. M. Alvarez, �??Analysis of theoretical models for erbium-doped silica fibre lasers,�?? Opt. Commun. 187, 107-123 (2001).
[CrossRef]

R. Rangel-Rojo and M. Mohebi, �??Study of the onset of self-pulsing behaviour in an Er-doped fibre laser,�?? Opt. Commun. 137, 98-102 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev. A

F. Sanchez, P. le Boudec, P. L. Francois, and G. Stephan, �??Effects of ion pairs on the dynamics of erbium-doped fiber lasers,�?? Phys. Rev. A 48, 2220-2229 (1993).
[CrossRef] [PubMed]

Quantum Electron.

S. G. Cruz-Vicente, M. A. Martinez-Gamez, A. V. Kir�??yanov, Yu. O. Barmenkov, and M. V. Andres, �??Self-Q-switched diode-pumped all-fiber Erbium laser,�?? Quantum Electron. 34, 310-314 (2004).
[CrossRef]

A. Yu. Plotskii, A. S. Kurkov, M. Yu. Yashkov, M. M. Bubnov, M. E. Likhachev, A. A. Sysolyatin, A. N. Gur�??yanov, and E. M. Dianov, �??Amplyfying properties of heavily erbium-doped active fibres,�?? Quantum Electron. 35, 559-562 (2005).
[CrossRef]

Other

M. J. F. Digonnet (Ed.), Rare Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, 1993).

E. Desurvire, Erbium-Doped Fiber Amplifiers. Principles and Applications (Wiley, 1994).

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Absorption spectrum of heavily doped Erbium fiber in 1.5-μm spectral range. Insets: (b) fiber full-saturated gain spectrum in the same spectral range; (c) fiber absorption spectrum in 1-μm spectral range.

Fig. 2.
Fig. 2.

Experimental (open symbols) and theoretical (lines) dependences of Erbium fiber transmission coefficient versus (a) pump power (for two fiber pieces, L = 118 and 278 cm) and (b) fiber length (for different input powers).

Fig. 3.
Fig. 3.

Simplified energy level diagram of Erbium.

Fig. 4.
Fig. 4.

Experimental (filled circles) and correspondent theoretical (lines) dependences of transmission coefficient versus pump power (in wide range of parameters characterizing ESA-(a) and IP- (b) effects). All curves correspond to Erbium fiber length L = 118 cm.

Fig. 5.
Fig. 5.

(a) Experimental set-up of Erbium fiber laser and (b) effective reflection spectrum of two output FBG-couplers (vertical line in graph (b) marks laser line position, λg = 1560.4 nm).

Fig. 6.
Fig. 6.

(a) Experimental (filled circles and dashed line) and theoretical (plain line) dependences of Erbium fiber laser output power (at wavelength λg = 1560 nm) versus pump power (at wavelength λp = 978 nm). Inset (b): Dependence of laser output power versus pump power for the following models: (1) both ESA and IP effects are accounted for; (2) both ESA and IP effects are not accounted for; (3) only ESA effect is accounted for, and (4) only IP effect is accounted for.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d P d z = α 0 Γ P { 1 [ ξ η ] n 2 } γ 0 P ,
α 0 Γ N 0 S a [ 1 ξ n 2 ] P n 2 τ 0 n 2 2 τ p = 0 ,
d P g d t = 2 T r P g { Γ α 0 [ ( ξ η ) y 1 ] α t h } + P s p ,
d y d t = α 0 Γ N 0 S a P g ( 1 ξ y ) y τ 0 y 2 τ p + P pump .
P g out = 0.5 P g h v g ln ( 1 R )
d P d z = α 0 Γ P { 1 μ Γ [ ξ η ] n 2 } γ 0 P ,
α 0 Γ N 0 S a [ 1 μ Γ ξ n 2 ] P n 2 τ 0 n 2 2 τ p = 0 ,
d P g d t = 2 T r P g { Γ α 0 [ μ Γ ( ξ η ) y 1 ] α t h } + P ,
d y d t = α 0 Γ N 0 S a P g ( 1 μ Γ ξ y ) y τ 0 y 2 τ p + P pump .

Metrics