Abstract

The fabrication and characterization of an all-solid photonic bandgap fiber is reported. The fiber presents a low-loss region (< 20 dB/km) around 1550 nm and can be used as single-mode even for a fiber core diameter as large as 20 μm. The fiber presents a zero dispersion at the short wavelength edge of the bandgap. The measured polarisation mode dispersion is wavelength dependent but remains small (few ps/km1/2). This fiber opens the possibility to realize low-loss large mode area bandgap fiber with a doped core and or Bragg gratings.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K.W. Koch, A. L. Gaeta, �??Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,�?? Science 301, 1702-1704 (2003).
    [CrossRef] [PubMed]
  2. J. D. Shephard, J. D. C. Jones D. P. Hand, G. Bouwmans, J. C. Knight, P. St.J. Russell, B. J. Mangan, "High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers," Opt. Express 12, 717-723 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-717">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-717</a>
    [CrossRef] [PubMed]
  3. G. Bouwmans, F. Luan, Jonathan Cave Knight, P. St. J. Russell, L. Farr, B. J. Mangan, and H. Sabert �??Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength,�?? Opt. Express 11, 1613-1620 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613</a>
    [CrossRef] [PubMed]
  4. X. Chen, M. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, and K. W. Koch, "Highly birefringent hollow-core photonic bandgap fiber," Opt. Express 12, 3888-3893 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3888">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3888</a>
    [CrossRef] [PubMed]
  5. F. Benabid, F. Couny, J.C. Knight, T.A. Birks, P.St.J Russell, �??Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,�?? Nature 434 (7032), 488-491 (2005)
    [CrossRef] [PubMed]
  6. F Benabid, G. Bouwmans, J.C. Knight, P.St.J. St Russell, F. Couny, �??Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,�?? Phys. Rev. Lett 93, art . 123903 (2004)
    [CrossRef]
  7. K. Saitoh, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394</a>
    [CrossRef] [PubMed]
  8. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485</a>
    [CrossRef] [PubMed]
  9. A.K. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, "Analysis of spectral characteristics of photonic bandgap waveguides," Opt. Express 10, 1320-1333 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320</a>
    [PubMed]
  10. T.P. White, R.C. McPhedran, C. Martijn de Sterke, N.M. Litchinister and B.J. Eggleton, �??Resonance and scattering in microstructured optical fibers,�?? Opt. Lett. 27, 1977-1979 (2002)
    [CrossRef]
  11. J. Jasapara, T.H. Her, R. Bise, R. Windeler, D.J. DiGiovanni,�?? Group-velocity dispersion measurements in a photonic bandgap fiber,�?? J. Opt. Soc. Am. B 20, 1611 (2003)
    [CrossRef]
  12. T.P. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589</a>
    [CrossRef] [PubMed]
  13. A. Argyros, T.A. Birks, S. G. Leon-Saval, C. B. Cordeiro, F. Luan, and Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-309">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-309</a>
    [CrossRef] [PubMed]
  14. F. Luan , A.K. George, TD Hedley, GJ Pearce, DM Bird, J.C.Knight, P.St.J. Russell, �??All solid photonic bandgap fiber,�?? Optics Lett. 29, 2369-2371 (2004)
    [CrossRef]
  15. P. Yeh, A. Yariv, E. Marom, �??Theory of Bragg fiber,�?? J. Opt. Soc. Am. 68(9), 1196-1201 (1978)
    [CrossRef]
  16. F. Brechet, P. Roy, J. Marcou, D. Pagnoux, �??Singlemode propagation into depressed-core-index photonic-bandgap fiber designed for zero-dispersion propagation at short wavelengths,�?? Electron. Lett. 36: 514-515 (2000)
    [CrossRef]
  17. P.St.J. Russell, �?? Photonic crystal fibers,�?? Science 299, 358-362 (2003)
    [CrossRef] [PubMed]
  18. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St.J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers," Opt. Express 12, 299-309 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299</a>
    [CrossRef] [PubMed]
  19. A.Fuerbach, P. Steinvurzel, J. A. Bolger, and B. J. Eggleton, "Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers," Opt. Express 13, 2977-2987 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2977">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2977<a/>
    [CrossRef] [PubMed]
  20. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243<a/>
    [CrossRef] [PubMed]
  21. T.L. Lukowski, F.P. Kapron, �??Parabolic cutoffs: A comparison of theories,�?? J. Opt. Soc. Am. 67, 1185-1187 (1977)
    [CrossRef]
  22. A. Argyros, T. A. Birks, S. G. Leon-Saval, Cordeiro, and P. St. J. Russell, "Guidance properties of low-contrast photonic bandgap fibers," Opt. Express 13, 2503-2511 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2503">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2503<a/>
    [CrossRef] [PubMed]
  23. M.D. Nielsen, J.R. Folkenberg and N.A. Mortensen, �??Singlemdoe photo,ic crsytal fibre with effective area of 600 µm2 and low bending loss,�?? Electron. Lett. 39, 1802-1803 (2003).
    [CrossRef]
  24. C.D. Poole and D.L. Favin, �??Polarization-Mode Dispersion Measurements Based on Transmission Spectra Through a Polarizer,�?? J. Lightwave Technol. 12, 917-929 (1994).
    [CrossRef]

Electron. Lett. (2)

F. Brechet, P. Roy, J. Marcou, D. Pagnoux, �??Singlemode propagation into depressed-core-index photonic-bandgap fiber designed for zero-dispersion propagation at short wavelengths,�?? Electron. Lett. 36: 514-515 (2000)
[CrossRef]

M.D. Nielsen, J.R. Folkenberg and N.A. Mortensen, �??Singlemdoe photo,ic crsytal fibre with effective area of 600 µm2 and low bending loss,�?? Electron. Lett. 39, 1802-1803 (2003).
[CrossRef]

J. Lightwave Technol. (1)

C.D. Poole and D.L. Favin, �??Polarization-Mode Dispersion Measurements Based on Transmission Spectra Through a Polarizer,�?? J. Lightwave Technol. 12, 917-929 (1994).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (1)

Nature (1)

F. Benabid, F. Couny, J.C. Knight, T.A. Birks, P.St.J Russell, �??Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers,�?? Nature 434 (7032), 488-491 (2005)
[CrossRef] [PubMed]

Opt. Express (12)

J. D. Shephard, J. D. C. Jones D. P. Hand, G. Bouwmans, J. C. Knight, P. St.J. Russell, B. J. Mangan, "High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers," Opt. Express 12, 717-723 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-717">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-717</a>
[CrossRef] [PubMed]

G. Bouwmans, F. Luan, Jonathan Cave Knight, P. St. J. Russell, L. Farr, B. J. Mangan, and H. Sabert �??Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength,�?? Opt. Express 11, 1613-1620 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613</a>
[CrossRef] [PubMed]

X. Chen, M. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, and K. W. Koch, "Highly birefringent hollow-core photonic bandgap fiber," Opt. Express 12, 3888-3893 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3888">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3888</a>
[CrossRef] [PubMed]

K. Saitoh, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394</a>
[CrossRef] [PubMed]

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485</a>
[CrossRef] [PubMed]

A.K. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, "Analysis of spectral characteristics of photonic bandgap waveguides," Opt. Express 10, 1320-1333 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320</a>
[PubMed]

T.P. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589</a>
[CrossRef] [PubMed]

A. Argyros, T.A. Birks, S. G. Leon-Saval, C. B. Cordeiro, F. Luan, and Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-309">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-309</a>
[CrossRef] [PubMed]

A. Argyros, T. A. Birks, S. G. Leon-Saval, Cordeiro, and P. St. J. Russell, "Guidance properties of low-contrast photonic bandgap fibers," Opt. Express 13, 2503-2511 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2503">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2503<a/>
[CrossRef] [PubMed]

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St.J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers," Opt. Express 12, 299-309 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299</a>
[CrossRef] [PubMed]

A.Fuerbach, P. Steinvurzel, J. A. Bolger, and B. J. Eggleton, "Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers," Opt. Express 13, 2977-2987 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2977">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2977<a/>
[CrossRef] [PubMed]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243<a/>
[CrossRef] [PubMed]

Opt. Lett. (1)

Optics Lett. (1)

F. Luan , A.K. George, TD Hedley, GJ Pearce, DM Bird, J.C.Knight, P.St.J. Russell, �??All solid photonic bandgap fiber,�?? Optics Lett. 29, 2369-2371 (2004)
[CrossRef]

Phys. Rev. Lett (1)

F Benabid, G. Bouwmans, J.C. Knight, P.St.J. St Russell, F. Couny, �??Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,�?? Phys. Rev. Lett 93, art . 123903 (2004)
[CrossRef]

Science (2)

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K.W. Koch, A. L. Gaeta, �??Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,�?? Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

P.St.J. Russell, �?? Photonic crystal fibers,�?? Science 299, 358-362 (2003)
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scanning electron micrograph of the SC-PBG fiber. The bright cylinders correspond to germanium-doped regions. The fiber diameter is 300 μm for a core diameter of 20 μm and a pitch, ʌ, of 15.2 μm.

Fig. 2.
Fig. 2.

(a) Transmission spectrum of the PBG fiber shown on Fig. 1 (L= 4 m). Full curves: experimental data with 2 nm (black) and 0.05 nm (dark blue) resolution. The hatched regions represent the range of wavelength for which new modes appear in the high index inclusions (cf. Table 1). (b) Schematic representation of the set-up used for transmission measurements

Fig. 3.
Fig. 3.

Loss transmission spectrum of the 300 μm diameter fiber. The spectrum was obtained by cutting the fiber from 387 m to 10 m.

Fig. 4.
Fig. 4.

(a) Near field image of the guided mode observed at 1470 nm for a fiber length of 59.5 cm. (b) Experimental intensity profiles (black curves) along the two axes X and Y shown on Fig. 4 (a). The red curves represent a Gaussian fit of the experimental data.

Fig. 5.
Fig. 5.

GVD measured with the phase modulation method (red curve) and the low coherence interference method (blue curve) inside the fiber’s 3rd bandgap. Inset shows an example of an interference pattern observed in the case of the interference method.

Fig. 6.
Fig. 6.

(a) Result of the substraction of two transmission spectra obtained for orthogonal directions of the input polarizer (Lfiber = 347 m) and (b) the corresponding calculated group delay τ.

Tables (1)

Tables Icon

Table 1. Mode cutoffs of the high-index inclusions of our 300 μm fiber according to the results published in [21]. Each range of wavelength for which a group of modes appears in high index inclusions has been represented by hatched areas on Fig. 2.

Metrics