Abstract

We propose a new scheme to guide cold atoms (or molecules) using a blue-detuned TE01 doughnut mode in a hollow metallic waveguide (HMW), and analyze the electromagnetic field distributions of various modes in the HMW. We calculate the optical potentials of the TE01 doughnut mode for three-level atoms using dressed-atom approach, and find that the optical potential of the TE01 mode is high enough to guide cold atoms released from a standard magneto-optical trap. Our study shows that when the input laser power is 0.5W and its detuning is 3GHz, the guiding efficiency of cold atoms in the straight HMW with a hollow radius of 15 μm can reach 98%, and this guiding efficiency will be almost unchanged with the change of curvature radius R of the bent HMW as R > 2cm, which is a desirable scheme to do some atom-optics experiments or realize a computer-controlled atom lithography with an arbitrary pattern. We also analyze the losses of the guided atoms in the HMW due to the spontaneous emission and background thermal collisions and briefly discuss some potential applications of our guiding scheme in atom and molecule optics.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Yin, W. Gao, and Y. Zhu, �??Generation of dark hollow beams and their applications,�?? Prog. Opt. 45, 119-204 (2003).
    [CrossRef]
  2. J. Yin, Y. Zhu, W. Wang, Y. Wang, and W. Jhe, �??Optical potential for atom guidance in a dark hollow laser beam,�?? J. Opt. Soc. Am. B 15, 25-33 (1998).
    [CrossRef]
  3. . J. Yin, Y. Zhu, W. Jhe, and Y. Wang, �??Atom guiding and cooling in a dark hollow laser beam,�?? Phys. Rev. A 58, 509-513 (1998).
    [CrossRef]
  4. X. Xu, K. Kim, W. Jhe, N. Kwon, �??Efficient optical guiding of trapped cold atoms by a hollow laser beam,�?? Phys. Rev. A 63, 063401 (2001).
    [CrossRef]
  5. L. Pruvost, D. Marescaux, O. Houde, and H. T. Duong, �?? Guiding and cooling of cold atoms in dipole guide,�?? Opt. Commun. 166, 199-209 (1999).
    [CrossRef]
  6. B. T. Wolschrijn, R. A. Cornelussen, R. J. C. Spreeuw, and H. B. van Linden van den Heuvell, �??Guiding of cold atoms by a red-detuned laser beam of moderate power,�?? New J. Phys. 4, 69.1-69.10 (2002).
    [CrossRef]
  7. M. A. Ol�??Shanii, Yu. B. Ovchinnikov, and V. S. Letkhov, �??Laser guiding of atoms in a hollow optical fiber,�?? Opt. Commun. 98, 77-79 (1993).
    [CrossRef]
  8. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, �??Laser-guided atoms in hollow-core optical fibers,�?? Phys. Rev. Lett. 75, 3253-3256 (1995).
    [CrossRef] [PubMed]
  9. M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, �??Optical-dipole-force fiber guiding and heating of atoms,�?? Phys. Rev. A 55, 3684-3693 (1997).
    [CrossRef]
  10. M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, �??Evanescent-wave guiding of atoms in hollow optical fibers,�?? Phys. Rev. A 53, R648-R651 (1996).
    [CrossRef] [PubMed]
  11. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, �??Laser spectroscopy of atoms guiding by evanescent waves in micron-sided hollow optical fibers,�?? Phys. Rev. Lett. 76, 4500-4503 (1996).
    [CrossRef] [PubMed]
  12. H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, �??Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,�?? Opt. Commun. 141, 43-47 (1997).
    [CrossRef]
  13. E. A. J. Marcatili, and R. A. Schmeltzer, �??Hollow metallic and dielectric waveguides for long distance optical transition and lasers,�?? Bell Syst. Tech. J. 43, 1783-1809 (1964).
  14. E. Garmire, T. McMahon, and M. Bass, �??Propagation of infrared light in flexible hollow waveguide,�?? Appl. Opt. 15, 145-150 (1976).
    [CrossRef] [PubMed]
  15. Y. Xia, and J. Yin, �??Generation of a focused hollow beam by an 2 Pi-phase plates and its applications in atom or molecule optics,�??J. Opt. Soc. Am. B 22, 529-536 (2005).
    [CrossRef]
  16. R. L. Abrams, and A. N. Chester, �??Resonator theory for hollow waveguide lasers,�?? Appl. Opt. 13, 2117-2125 (1974).
    [CrossRef] [PubMed]
  17. M. Saito, S. Sato, and M. Miyagi, �??Loss characteristics of infrared hollow waveguides in multimode transmission,�?? J. Opt. Soc. Am. A 10, 277-282 (1993).
    [CrossRef]
  18. M. Miyagi, and S. Kawakami, �??Design theory of dielectric-coated circular metallic waveguide for infrared transition,�?? IEEE J. Lightwave Technol. 2, 116-126 (1984).
    [CrossRef]
  19. V. I. Balykin, D. V. Laryushin, M. V. Subbotin, and V. S.L etokhov, �??Increase of the atomic phase density in a hollow laser waveguide,�?? JETP Lett. 63, 802-807 (1996).
    [CrossRef]
  20. J. Yin, Y. Zhu, and Y. Wang, �??Evanescent light�??wave atomic funnel: A tanden hollow-fiber, hollow-beam approach,�?? Phys. Rev. A 57, 1957-1966 (1998).
    [CrossRef]
  21. J. Yin, Y.Zhu, and Y. Wang, �??Gravito-optical trap for cold atoms with doughnut-hollow-beam cooling,�?? Phys. Lett. A 248, 309-318 (1998).
    [CrossRef]
  22. J. Söding, R. Grimm, and Yu. B. Ovchinnikov, �??Gravitational laser trap for atoms with evanescent-wave cooling,�?? Opt. Commun. 119, 652-662 (1995).
    [CrossRef]
  23. Yu.B. Ovchinnikov, I. Manek, and R. Grimm, �??Surface trap for Cs atoms based on evanescent-wave cooling,�?? Phys. Rev. Lett.79, 2225-2228 (1997).
    [CrossRef]
  24. X. Xu, V. G. Minogin, K. Lee, Y. Wang, and W. Jhe, �??Guiding cold atoms in a hollow laser beam,�?? Phys. Rev. A 60, 4796-4804 (1999).
    [CrossRef]
  25. J. Yin, and Y. Zhu, �??Dark-hollow-beam gravito-optical atom trap above an apex of a hollow optical fibre,�?? Opt. Commun. 152, 421-428 (1998).
    [CrossRef]
  26. X. Xu, Y. Wang, and W. Jhe, �??Theory of atom guidance in a hollow laser beam: dressed-atom approach,�?? J. Opt. Soc. Am. B 17, 1039-1050 (2000).
    [CrossRef]
  27. H. Nha, and W. Jhe, �??Sisphus cooling on the surface of a hollow-mirror atom trap,�?? Phys. Rev. A 56, 729-736 (1997).
    [CrossRef]
  28. J. Dalibard, and C. Cohen-Tannoudji, �??Dressed-atom approach to atomic motion in laser light: the dipole force revisited,�?? J. Opt. Soc. Am. B 2, 1707-1720 (1985).
    [CrossRef]
  29. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, �??Low-velocity intense source of atoms from a magneto-optical trap,�?? Phys. Rev. Lett. 77, 3331-3334 (1996).
    [CrossRef] [PubMed]
  30. H. Ito, K. Sakaki, M. Ohtsu, and W. Jhe, �??Evanescent-light guiding of atoms throught hollow optical fiber for optically controlled atomic deposition,�?? Appl. Phys. Lett. 70 2496-2498 (1997).
    [CrossRef]
  31. J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, �??Generation of a dark hollow beam by a small hollow fiber,�?? Opt. Commun. 138, 287-292 (1997).
    [CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. Ito, K. Sakaki, M. Ohtsu, and W. Jhe, �??Evanescent-light guiding of atoms throught hollow optical fiber for optically controlled atomic deposition,�?? Appl. Phys. Lett. 70 2496-2498 (1997).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, and R. A. Schmeltzer, �??Hollow metallic and dielectric waveguides for long distance optical transition and lasers,�?? Bell Syst. Tech. J. 43, 1783-1809 (1964).

IEEE J. Lightwave Technol. (1)

M. Miyagi, and S. Kawakami, �??Design theory of dielectric-coated circular metallic waveguide for infrared transition,�?? IEEE J. Lightwave Technol. 2, 116-126 (1984).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (4)

JEPT (1)

V. I. Balykin, D. V. Laryushin, M. V. Subbotin, and V. S.L etokhov, �??Increase of the atomic phase density in a hollow laser waveguide,�?? JETP Lett. 63, 802-807 (1996).
[CrossRef]

New J. Phys. (1)

B. T. Wolschrijn, R. A. Cornelussen, R. J. C. Spreeuw, and H. B. van Linden van den Heuvell, �??Guiding of cold atoms by a red-detuned laser beam of moderate power,�?? New J. Phys. 4, 69.1-69.10 (2002).
[CrossRef]

Opt. Commun. (6)

M. A. Ol�??Shanii, Yu. B. Ovchinnikov, and V. S. Letkhov, �??Laser guiding of atoms in a hollow optical fiber,�?? Opt. Commun. 98, 77-79 (1993).
[CrossRef]

L. Pruvost, D. Marescaux, O. Houde, and H. T. Duong, �?? Guiding and cooling of cold atoms in dipole guide,�?? Opt. Commun. 166, 199-209 (1999).
[CrossRef]

H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, �??Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,�?? Opt. Commun. 141, 43-47 (1997).
[CrossRef]

J. Söding, R. Grimm, and Yu. B. Ovchinnikov, �??Gravitational laser trap for atoms with evanescent-wave cooling,�?? Opt. Commun. 119, 652-662 (1995).
[CrossRef]

J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, �??Generation of a dark hollow beam by a small hollow fiber,�?? Opt. Commun. 138, 287-292 (1997).
[CrossRef]

J. Yin, and Y. Zhu, �??Dark-hollow-beam gravito-optical atom trap above an apex of a hollow optical fibre,�?? Opt. Commun. 152, 421-428 (1998).
[CrossRef]

Phys. Lett. A (1)

J. Yin, Y.Zhu, and Y. Wang, �??Gravito-optical trap for cold atoms with doughnut-hollow-beam cooling,�?? Phys. Lett. A 248, 309-318 (1998).
[CrossRef]

Phys. Rev. A (7)

X. Xu, V. G. Minogin, K. Lee, Y. Wang, and W. Jhe, �??Guiding cold atoms in a hollow laser beam,�?? Phys. Rev. A 60, 4796-4804 (1999).
[CrossRef]

J. Yin, Y. Zhu, and Y. Wang, �??Evanescent light�??wave atomic funnel: A tanden hollow-fiber, hollow-beam approach,�?? Phys. Rev. A 57, 1957-1966 (1998).
[CrossRef]

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, �??Optical-dipole-force fiber guiding and heating of atoms,�?? Phys. Rev. A 55, 3684-3693 (1997).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, �??Evanescent-wave guiding of atoms in hollow optical fibers,�?? Phys. Rev. A 53, R648-R651 (1996).
[CrossRef] [PubMed]

. J. Yin, Y. Zhu, W. Jhe, and Y. Wang, �??Atom guiding and cooling in a dark hollow laser beam,�?? Phys. Rev. A 58, 509-513 (1998).
[CrossRef]

X. Xu, K. Kim, W. Jhe, N. Kwon, �??Efficient optical guiding of trapped cold atoms by a hollow laser beam,�?? Phys. Rev. A 63, 063401 (2001).
[CrossRef]

H. Nha, and W. Jhe, �??Sisphus cooling on the surface of a hollow-mirror atom trap,�?? Phys. Rev. A 56, 729-736 (1997).
[CrossRef]

Phys. Rev. Lett. (4)

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, �??Low-velocity intense source of atoms from a magneto-optical trap,�?? Phys. Rev. Lett. 77, 3331-3334 (1996).
[CrossRef] [PubMed]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, �??Laser-guided atoms in hollow-core optical fibers,�?? Phys. Rev. Lett. 75, 3253-3256 (1995).
[CrossRef] [PubMed]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, �??Laser spectroscopy of atoms guiding by evanescent waves in micron-sided hollow optical fibers,�?? Phys. Rev. Lett. 76, 4500-4503 (1996).
[CrossRef] [PubMed]

Yu.B. Ovchinnikov, I. Manek, and R. Grimm, �??Surface trap for Cs atoms based on evanescent-wave cooling,�?? Phys. Rev. Lett.79, 2225-2228 (1997).
[CrossRef]

Prog. Opt. (1)

J. Yin, W. Gao, and Y. Zhu, �??Generation of dark hollow beams and their applications,�?? Prog. Opt. 45, 119-204 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) The structure of the HMW; (b) schematic diagram of atomic guiding. HMW, BDGB, MOT and 2π PP stand for hollow metallic waveguide, blue-detuned Gaussian beam, magneto-optic trap and 2π -phase plate.

Fig. 2.
Fig. 2.

Normalized electric field distribution: (a) against the radial position r for the TE01 mode; (b) against the propagation distance z.

Fig. 3.
Fig. 3.

Dependences of the optical potentials: (a) on the detuning; (b) on the radial position r.

Fig. 4.
Fig. 4.

Dependences of the spontaneous emission rates: (a) on the detuning δ/2π ; (b) on the intensity.

Fig. 5.
Fig. 5.

Dependences of the guiding efficiency on the input laser power: (a) for the straight HMW; (b) for the bent HMW.

Equations (49)

Equations on this page are rendered with MathJax. Learn more.

E r = 1 k i 2 ( E s r + m r μ 0 ωH z ) ,
E ϕ = 1 k i 2 ( 0 ω H z r + m r γE z ) ,
H r = 1 k i 2 ( H z r m r ε 0 ωE z ) ,
H ϕ = 1 k i 2 ( 0 ω E z r + m r γH z ) ,
E z ( r ) = C 1 J m ( k i r ) + C 2 N m ( k i r ) ,
H z ( r ) = C 3 J m ( k i r ) + C 4 N m ( k i r ) ,
E r = 1 k i 2 [ i γ 0 C 1 J m ' ( k i r ) + m r μ 0 ω C 3 J m ( k i r ) ] ,
E ϕ = 1 k i 2 [ i μ 0 ω C 3 J m ' ( k i r ) + m r γC 1 J m ( k i r ) ] .
E r = 0 ,
E ϕ ( r ) = 0 ωC 3 k i 2 J 1 ( u 01 r a ) .
E FHB ( r ) = ( 4 k 1 P in π ) 1 2 × r w 0 2 × exp ( r 2 w 0 2 ) ,
A = 0 a E FHB ( r ) E ϕ ( r ) r dr 2 0 E FHB ( r ) 2 r dr 0 a E ϕ ( r ) 2 r dr .
I ( r ) = P J 1 2 ( u 01 r a ) 2 π 0 a J 1 2 ( u 01 r a ) r dr = P J 1 2 ( u 01 r a ) a 2 π J 0 ( μ 01 ) J 2 ( μ 01 ) .
ħ ( n + 1 ) ω L + δ hfs 0 G 2 ( n + 1 ) 1 2 0 ( n + 1 ) ω L G 1 ( n + 1 ) 1 2 G 2 ( n + 1 ) 1 2 G 1 ( n + 1 ) 1 2 L + ω 0 A i B i C i = E Dr i A i B i C i ,
U 1 = ħδ 4 ħ Ω 1 ' 4 ± ħ [ ( ± Ω 1 ' 2 + δ 2 ) 2 + Ω 1 2 ] 1 2 2 ,
U 2 = ħ δ 4 ħ Ω 1 ' 4 ħδ hfs 2 + sgn × ħ [ ( ± Ω 1 ' 2 + δ 2 + δ hfs ) 2 + Ω 2 2 ] 1 2 2 ,
U 3 = ħ δ 4 ± ħ Ω 1 ' 4 + ħδ hfs 2 ħ [ ( ± Ω 1 ' 2 + δ 2 ) 2 + Ω 1 2 ] 1 2 2 sgn × ħ [ ( ± Ω 1 ' 2 + δ 2 + δ hfs ) 2 + Ω 2 2 ] 1 2 2 ,
i , n = A i g 2 , n + 1 + B i g 2 , n + 1 + C i e , n ,
A i = a i 2 ( 1 + a i 1 2 + a i 2 2 ) 1 2 , B i = a i 1 ( 1 + a i 1 2 + a i 2 2 ) 1 2 , C i = 1 ( 1 + a i 1 2 + a i 2 2 ) 1 2 ,
a 11 = Ω 1 δ 2 Ω 1 ' 2 ± [ ( ± Ω 1 ' 2 + δ 2 ) 2 + Ω 1 2 ] 1 2 ,
a 12 = Ω 2 δ 2 Ω 1 ' 2 ± [ ( ± Ω 1 ' 2 + δ 2 ) 2 + Ω 1 2 ] 1 2 2 δ hfs ,
a 21 = Ω 1 δ 2 ± Ω 1 ' 2 δ hfs sgn × [ ( ± Ω 1 ' 2 + δ 2 + δ hfs ) 2 + Ω 2 2 ] 1 2 ,
a 22 = Ω 2 δ 2 ± Ω 1 ' 2 + δ hfs sgn × [ ( ± Ω 1 ' 2 + δ 2 + δ hfs ) 2 + Ω 2 2 ] 1 2 ,
a 31 = Ω 1 δ Ω 1 ' δ hfs ± [ ( ± Ω 1 ' 2 + δ 2 ) 2 + Ω 1 2 ] 1 2 + sgn × [ ( ± Ω 1 ' 2 + δ 2 + δ hfs ) 2 + Ω 2 2 ] 1 2 ,
a 32 = Ω 2 δ Ω 1 ' + δ hfs ± [ ( ± Ω 1 ' 2 + δ 2 ) 2 + Ω 1 2 ] 1 2 + sgn × [ ( ± Ω 1 ' 2 + δ 2 + δ hfs ) 2 + Ω 2 2 ] 1 2 .
Γ ij = B i 2 C j 2 Γ 1 + A i 2 C j 2 Γ 2 ,
Γ i 1 = B i 2 C 1 2 Γ 1 + A i 2 C 1 2 Γ 2 .
f ( v x , v y , v z ) = ( M 2 πk B T ) 3 2 exp [ M 2 k B T ( v x 2 + v y 2 + v z 2 ) ] ,
J i = ∫∫ x 2 + y 2 < r 0 2 1 V dxdy ∫∫∫∫ v z > 0 v z f ( v x , v y , v z ) dv x dv y dv z = ( π 2 ) 1 2 ( k B T M ) 1 2 r 0 2 V ,
J 0 ( δ , P in ) = ∫∫ r < r 0 1 V rdrd ϕ ∫∫∫ S , v z > 0 v z f ( v x , v ϕ , v z ) dv r dv ϕ dv z ,
S = { r , v r , v ϕ : 1 2 Mv r 2 + 1 2 Mv ϕ 2 + U ( r ) < 1 2 M r 2 r 0 2 v ϕ 2 + U ( r 0 ) } ,
r = ρr 0 , v r = u r ( 2 k B T M ) 1 2 , v ϕ = u ϕ ( 2 k B T M ) 1 2 , v z = u z ( 2 k B T M ) 1 2 .
J 0 ( δ , P in ) = r 0 2 V ( 2 k B T M ) 1 2 0 1 ρ { ∫∫ S ' ( ρ ) exp [ ( u r 2 + u ϕ 2 ) ] du r du ϕ } ,
S ' ( ρ ) = { ρ , u r , u ϕ : u r 2 + k B T ( 1 ρ 2 ) u ϕ 2 < U ( r 0 ) U ( r 0 ρ ) } .
η = π 2 0 1 ρ { ∫∫ S ' ( ρ ) exp [ ( u r 2 + u ϕ 2 ) ] du r du ϕ } .
x = x ' ,
y = R 1 cos ( z ' R ) + y ' cos ( z ' R ) ,
z = ( R y ' ) sin ( z ' R ) .
e x = e x ' ,
e y = e y ' cos ( z ' R ) + e z ' sin ( z ' R )
e z = e y ' sin ( z ' R ) + e z ' cos ( z ' R ) .
a = a x ' e x ' + [ a y ' + v z ' 2 R ( 1 y ' R ) ] e y ' + [ a z ' ( 1 y ' R ) 2 v y ' v z ' R ] e z ' .
1 2 Mv x ' 2 + 1 2 Mv y ' 2 + M v z ' 2 R ( y ' + r 0 ) + U ( x ' , y ' , z ' ) U ( r 0 , z ' ) .
U x ' y ' z ' = { 0 , x ' < r 0 and y ' < r 0 , U r 0 z ' , x ' = r 0 or y ' = r 0 ,
1 2 Mv x ' 2 U r 0 z '
1 2 Mv y ' 2 + M v z ' 2 R ( y ' + r 0 ) U r 0 z ' .
η = ( erf { [ U ( r 0 , z ' ) k B T ] 1 2 } ) 2 1 2 erf { [ U r 0 z ' k B T ] 1 2 }
× 1 1 exp [ U r 0 z ' k B T R 2 r 0 ( 1 + l ) ] [ R 2 r 0 ( 1 + l ) 1 ] 1 2 × erfi ( { U r 0 z ' k B T [ R 2 r 0 ( 1 + l ) 1 ] } 1 2 ) dl ,
γ ac = 1 τ ac 100 n σ Rb ( 3 k B T ther M ) ,

Metrics