Abstract

We report on the first Doppler-free spectroscopy investigation of an atomic species, xenon, performed in the mid-infrared using difference-frequency radiation. The absorption saturated spectrum of the xenon 6p[3/2]2→5d[5/2]3 transition (2p6→3d’1 in Paschen notation) at 3.1076 μm was investigated using about 60 microwatts of cw narrowband radiation (Δv=50 kHz) generated by difference-frequency mixing in a periodically-poled Lithium Niobate crystal. A single frequency Ti: Sapphire laser (power 800 mW) and a monolithic diode-pumped Nd:YAG laser (300 mW) were used as pump and signal waves respectively. We used natural enriched xenon, which contains nine stable isotopes, two of which, 129Xe and 131Xe, exhibit a hyperfine structure owing to their nuclear spin. The small isotope displacements expected for this atom and the complex hyperfine structure of the odd isotopes make it difficult to fully resolve the recorded saturated-absorption spectra. In spite of this, we have been able to analyze the isolated 129Xe F’’=5/2→F’=7/2 hyperfine component by means of first-derivative FM spectroscopy.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. M. J. Van Herpen, S. Li, S. E. Bisson, S. Te Lintel Hekkert, and F. J. M. Harren, �??Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,�?? Appl. Phys. B 75, 329-333 (2002)
    [CrossRef]
  2. D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, �??Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,�?? Appl. Phys. B 75, 281-288 (2002).
    [CrossRef]
  3. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, �??Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,�?? Opt. Lett. 23, 219-221 (1998)
    [CrossRef]
  4. D. G. Lancaster, D. Richter, R. F. Curl, and F. K. Tittel, �??Real-time measurements of trace gases using a compact difference-frequency-based sensor operating at 3.5 µm,�?? Appl. Phys. B 67, 339-345 (1998)
    [CrossRef]
  5. S. Stry, P. Hering, and M. Murtz, �??Portable difference-frequency laser-based cavity leak-out spectrometer for trace-gas analysis,�?? Appl. Phys. B 75, 297-303 (2002)
    [CrossRef]
  6. A. Hecker, M. Havenith, C. Braxmaier, U. Stroner, and A. Peters, �??High resolution Doppler-free spectroscopy of molecular iodine using a continuous wave optical parametric oscillator,�?? Opt. Commun. 218, 131-134 (2003)
    [CrossRef]
  7. D. Mazzotti, P. De Natale, G. Gagliardi, C. Fort, J. A. Mitchell, and L. Hollberg, �??Saturated-absorption spectroscopy with low-power difference-frequency radiation�?? Opt. Lett. 25, 350-352 (2000)
    [CrossRef]
  8. J. T. Remillard, D. Uy, W. H. Weber, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, �??Sub-Doppler resolution limited Lamb-dip spectroscopy of NO with a quantum cascade distributed feedback laser�?? Opt. Express 7, 243-248 (2000) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-7-243">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-7-243</a>
    [CrossRef] [PubMed]
  9. P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, �??A 3.5-mW continuous-wave difference-frequency source around 3 mu m for sub-Doppler molecular spectroscopy�?? Appl. Phys. B 20, 141-145 (2005).
    [CrossRef]
  10. S. Borri, P. Cancio, P. De Natale, G. Giusfredi, D. Mazzotti, and F. Tamassia �??Power-boosted difference-frequency source for high-resolution infrared spectroscopy�?? Appl. Phys. B 76, 473 (2003)
    [CrossRef]
  11. J. Bauche and R. J. Champeau, �??Recent progress in the theory of atomic isotope shifts�?? Adv. At. Mol. Phys. 37, 39-86 (1976).
    [CrossRef]
  12. D.A. Jackson, F.R.S. and M.-C. Coulombe, �??Isotope shifts in the arc spectrum of xenon,�?? Proc. R. Soc. Lond. A 338, 277-281 (1974)
    [CrossRef]
  13. D.A. Jackson, F.R.S. and M.-C. Coulombe, and J. Bauche, �??Isotope shifts in the arc spectrum of xenon II�?? Proc. R. Soc. Lond. A 343, 453-459 (1975).
    [CrossRef]
  14. W. Fischer, H. Huhnermann, G. Kromer, and H. J. Schafer, �??Isotope shift in the Atomic Spectrum of Xenon and Nuclear Deformation Effects,�?? Z. Phys. 270, 113-120 (1974).
    [CrossRef]
  15. W. Borchers, E. Arnold, W. Neu, R. Neugart, K. Wendt, and G. Ulm, �??Xenon Isotopes far from Stability studied by Collisional Ionization Laser Spectroscopy,�?? Phys. Lett. B 216, 7-10 (1989).
    [CrossRef]
  16. H. Geisen, T. Krumpelmann, D. Neuschafer and Ch. Ottingen, �??Hyperfine splitting measurements on the 6265 �? and 6507 �? lines of seven Xe isotopes by lif on a beam of metastable Xe(3P0,2) atoms,�?? Phys. Lett. A 130, 299-304 (1988).
    [CrossRef]
  17. M. D. Plimmer, P.E.G. Baird, C.J. Foot, D.N. Stacey, J.B. Swan and G.K. Woodgate, �??Isotope shift in xenon by Doppler-free two-photons laser spectroscopy�?? J. Phys. B: At. Mol. Opt. Phys. 22, L241-L244 (1989).
    [CrossRef]
  18. U. Sterr, A. Bard, C. J. Sansonetti, S. L. Rolston, and J. D. Gilapsy, �??Determination of the xenon 6s[3/2](2)-6s'[1/2](0) clock frequency by interferometric wavelength measurements,�?? Opt. Lett. 20, 1421-1423 (1995).
    [CrossRef] [PubMed]
  19. M. Walhout, H. J. L. Megens, A. Witte, and S. L. Rolston, �??Magnetooptical trapping of metastable xenon-isotope-shift measurements,�?? Phys. Rev. A 48, R879-R882 (1993).
    [CrossRef] [PubMed]
  20. G. D�??Amico, G. Pesce, A. Sasso, �??Isotope-shift and hyperfine-constant measurements of near-infrared xenon transitions in glow discharges and on a metastable Xe(P-3(2)) beam,�?? Phys. Rev. A 60, 4409-4416 (1999).
    [CrossRef]
  21. G. M. Tino, L. Hollberg, A. Sasso, M. Inguscio, and M. Barsanti, �??Hyperfine-structure of the metastable S-2(5) state of O-17 using an AlGaAs diode-laser at 777 nm ,�?? Phys. Rev. Lett. 64, 2999-3002 (1990).
    [CrossRef] [PubMed]
  22. A. A. Radzig and B. M. Smirnov in �??Reference Data on Atoms, Molecules, and Ions,�?? Springer Series in Chemical Physics - Berlin (1980).
  23. V. S. Letokhov and V. P. Chebotayev in Nonlinear Laser Spectroscopy, Springer Verlag Series in Optical Sciences Berlin (1977).
  24. J. Hall, L. Ma, M. Taubmann, B. Tiemann, F. Hong, O. Pfister, J. Ye, �??Stabilization and frequency measurement of the I-2-stabilized Nd : YAG laser,�?? IEEE Trans. Instrum. Meas. 48, 583-586 (1999).
    [CrossRef]
  25. R. Holzwarth, T. Udem , T. Hansch, W. Knight, W. J. Wadsworth, P. St. J. Russel, �??Optical frequency synthesizer for precision spectroscopy,�?? Phys. Rev. Lett. 85, 2264-2267 (2000).
    [CrossRef] [PubMed]

Adv. At. Mol. Phys. (1)

J. Bauche and R. J. Champeau, �??Recent progress in the theory of atomic isotope shifts�?? Adv. At. Mol. Phys. 37, 39-86 (1976).
[CrossRef]

Appl. Phys. B (6)

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, �??A 3.5-mW continuous-wave difference-frequency source around 3 mu m for sub-Doppler molecular spectroscopy�?? Appl. Phys. B 20, 141-145 (2005).
[CrossRef]

S. Borri, P. Cancio, P. De Natale, G. Giusfredi, D. Mazzotti, and F. Tamassia �??Power-boosted difference-frequency source for high-resolution infrared spectroscopy�?? Appl. Phys. B 76, 473 (2003)
[CrossRef]

D. G. Lancaster, D. Richter, R. F. Curl, and F. K. Tittel, �??Real-time measurements of trace gases using a compact difference-frequency-based sensor operating at 3.5 µm,�?? Appl. Phys. B 67, 339-345 (1998)
[CrossRef]

S. Stry, P. Hering, and M. Murtz, �??Portable difference-frequency laser-based cavity leak-out spectrometer for trace-gas analysis,�?? Appl. Phys. B 75, 297-303 (2002)
[CrossRef]

M. M. J. Van Herpen, S. Li, S. E. Bisson, S. Te Lintel Hekkert, and F. J. M. Harren, �??Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,�?? Appl. Phys. B 75, 329-333 (2002)
[CrossRef]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, �??Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,�?? Appl. Phys. B 75, 281-288 (2002).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

J. Hall, L. Ma, M. Taubmann, B. Tiemann, F. Hong, O. Pfister, J. Ye, �??Stabilization and frequency measurement of the I-2-stabilized Nd : YAG laser,�?? IEEE Trans. Instrum. Meas. 48, 583-586 (1999).
[CrossRef]

J. Phys. B: At. Mol. Opt. Phys. (1)

M. D. Plimmer, P.E.G. Baird, C.J. Foot, D.N. Stacey, J.B. Swan and G.K. Woodgate, �??Isotope shift in xenon by Doppler-free two-photons laser spectroscopy�?? J. Phys. B: At. Mol. Opt. Phys. 22, L241-L244 (1989).
[CrossRef]

Opt. Commun. (1)

A. Hecker, M. Havenith, C. Braxmaier, U. Stroner, and A. Peters, �??High resolution Doppler-free spectroscopy of molecular iodine using a continuous wave optical parametric oscillator,�?? Opt. Commun. 218, 131-134 (2003)
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Lett. A (1)

H. Geisen, T. Krumpelmann, D. Neuschafer and Ch. Ottingen, �??Hyperfine splitting measurements on the 6265 �? and 6507 �? lines of seven Xe isotopes by lif on a beam of metastable Xe(3P0,2) atoms,�?? Phys. Lett. A 130, 299-304 (1988).
[CrossRef]

Phys. Lett. B (1)

W. Borchers, E. Arnold, W. Neu, R. Neugart, K. Wendt, and G. Ulm, �??Xenon Isotopes far from Stability studied by Collisional Ionization Laser Spectroscopy,�?? Phys. Lett. B 216, 7-10 (1989).
[CrossRef]

Phys. Rev. A (2)

M. Walhout, H. J. L. Megens, A. Witte, and S. L. Rolston, �??Magnetooptical trapping of metastable xenon-isotope-shift measurements,�?? Phys. Rev. A 48, R879-R882 (1993).
[CrossRef] [PubMed]

G. D�??Amico, G. Pesce, A. Sasso, �??Isotope-shift and hyperfine-constant measurements of near-infrared xenon transitions in glow discharges and on a metastable Xe(P-3(2)) beam,�?? Phys. Rev. A 60, 4409-4416 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

G. M. Tino, L. Hollberg, A. Sasso, M. Inguscio, and M. Barsanti, �??Hyperfine-structure of the metastable S-2(5) state of O-17 using an AlGaAs diode-laser at 777 nm ,�?? Phys. Rev. Lett. 64, 2999-3002 (1990).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem , T. Hansch, W. Knight, W. J. Wadsworth, P. St. J. Russel, �??Optical frequency synthesizer for precision spectroscopy,�?? Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A (2)

D.A. Jackson, F.R.S. and M.-C. Coulombe, �??Isotope shifts in the arc spectrum of xenon,�?? Proc. R. Soc. Lond. A 338, 277-281 (1974)
[CrossRef]

D.A. Jackson, F.R.S. and M.-C. Coulombe, and J. Bauche, �??Isotope shifts in the arc spectrum of xenon II�?? Proc. R. Soc. Lond. A 343, 453-459 (1975).
[CrossRef]

Springer Series in Chemical Physics (1)

A. A. Radzig and B. M. Smirnov in �??Reference Data on Atoms, Molecules, and Ions,�?? Springer Series in Chemical Physics - Berlin (1980).

Springer Verlag Series in Optical Scienc (1)

V. S. Letokhov and V. P. Chebotayev in Nonlinear Laser Spectroscopy, Springer Verlag Series in Optical Sciences Berlin (1977).

Z. Phys. (1)

W. Fischer, H. Huhnermann, G. Kromer, and H. J. Schafer, �??Isotope shift in the Atomic Spectrum of Xenon and Nuclear Deformation Effects,�?? Z. Phys. 270, 113-120 (1974).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scheme of the experimental setup. Mid-IR radiation is produced by difference-frequency generation in a periodically poled lithium niobate crystal by using a Ti:Sapphire (pump) laser and a Nd:YAG (signal) laser. The produced mid-IR beam is retroreflected through the discharge cell to observe sub-Doppler saturation spectra. L: lens; OI: optical isolator; HWP: half-wave plate; P: polarizer; M: mirror; DM: dichroic mirror; GF: germanium filter; BS: beam splitter; Doubled Nd-YVO: frequency-doubled Neodymium: Yttrium Orthovanadate laser.

Fig. 2.
Fig. 2.

Doppler-free (a) and Doppler-limited (b) spectra of the 2p6→3d’1 transition at 3.1076 μm. The saturation dips are not observed in the Doppler profile, while they are enhanced (indicated by arrows) with derivative spectroscopy using FM spectroscopy.

Fig. 3.
Fig. 3.

(a) A simplified energy-level scheme of Xe showing the mid-IR transition investigated in this work. In part (b) and (c) are shown the hyperfine structure levels of the 129Xe and 131Xe respectively. The circled numbers are the normalized intensities of the hyperfine components.

Fig. 4.
Fig. 4.

Saturated-absorption dip of the hyperfine component recorded as first-derivative FM spectrum. The continuous line represents the result of a fit procedure where the experimental points are compared to the derivative of the sum of a Gaussian and Lorentzian profile.

Fig. 5.
Fig. 5.

Behavior of the experimental contrast H versus the mid-IR radiation intensity.

Metrics