Abstract

We have simulated the photon migration with various source-detector separations based on a three-dimensional Monte Carlo code. The whole brain MRI structure images are introduced in the simulation, and the brain model is more accurate then the previous studies. The brain model consists of scalp, skull, CSF layer, gray matter, and white matter. We demonstrate dynamic propagating movies under different source-detector separations. The multiple backscattered intensity from every layer of the brain model is obtained by marking the deepest layer which every photon can reach. Also the influences of an absorption target on brain cortex are revealed.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models

Yuich Fukui, Yusaku Ajichi, and Eiji Okada
Appl. Opt. 42(16) 2881-2887 (2003)

The influence of frontal sinus in brain activation measurements by near-infrared spectroscopy analyzed by realistic head models

Kazuki Kurihara, Hiroshi Kawaguchi, Takayuki Obata, Hiroshi Ito, Kaoru Sakatani, and Eiji Okada
Biomed. Opt. Express 3(9) 2121-2130 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. Boas , “ Noninvasive Imaging of the Brain ,” Optics News   15 , 52 – 55 ( 2004 )
  2. A. Villringer and B. Chance , “ Non-invasive optical spectroscopy and imaging of human brain function ,” Trends Neurosci .   20 , 435 – 442 ( 1997 )
    [Crossref] [PubMed]
  3. A. Villringer , J. Planck , C. Hock , L. schleinkofer , and U. Dirnagl , “ Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults ,” Neurosci. Lett.   154 , 101 – 104 ( 1993 )
    [Crossref] [PubMed]
  4. Y. Fukui , Y. Ajichi , and E. Okada , “ Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models ,” Appl. Opt.   42 , 2881 – 2887 ( 2003 )
    [Crossref] [PubMed]
  5. H. Koizumi , T. Yamamoto , A. Maki , Y. Yamashita , H. Sato , H. Kawaguchi , and N. Ichikawa , “ Optical topography: practical problems and new applications ,” Appl. Opt.   42 , 3054 – 3062 ( 2003 )
    [Crossref] [PubMed]
  6. E. Okada and D.T. Delpy “ Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer “ Appl. Opt.   42 , 2906 – 2914 ( 2003 )
    [Crossref] [PubMed]
  7. T. Hayashi , Y. Kashio , and E. Okada , “ Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region ,” Appl. Opt.   42 , 2888 – 2896 ( 2003 )
    [Crossref] [PubMed]
  8. A. Ishimaru , Wave propagation and scattering in random media, I and II ( Academic, New York, 1978 )
  9. A. Yodh and B. Chance , “ Spectroscopy and imaging with diffusing light ,” Phys. Today   48 , 38 – 40 ( 1995 )
    [Crossref]
  10. S.K. Gayen and R.R. Alfano , “ Emerging optical biomedical imaging techniques ,” Opt. Photon. News   7 , 17 – 22 ( 1996 )
    [Crossref]
  11. S. R. Arridge , “ Optical tomography in medical imaging ,” Inverse Problems   15 , R41 – R93 ( 1999 )
    [Crossref]
  12. P. Bruscaglioni , G. Zaccanti , and Q. Wei , “ Transmission of a pulsed polarized light beam through thick turbid media: numerical results ,” Appl. Opt.   32 , 6142 – 6150 ( 1993 )
    [Crossref] [PubMed]
  13. M. J. Rakovic , G.W. Kattawar , M. Mehrbeolu , B.D. Cameron , L. V. Wang , S. Rastegar , and G. L. Cote , “ Light Backscattering Polarization Patterns from Turbid Media: Theory and Experiment ,” Appl. Opt.   38 , 3399 – 3408 ( 1999 )
    [Crossref]
  14. S. Bartel and A. H. Hielscher , “ Monte Carlo Simulations of the Diffuse Backscattering Mueller Matrix for Highly Scattering Media ,” Appl. Opt.   39 , 1580 – 1588 ( 2000 )
    [Crossref]
  15. M. Moscoso , J. B. Keller , and G. Papanicolaou , “ Depolarization and blurring of optical images by biological tissue ,” J. Opt. Soc. Am. A   18 , 948 – 960 ( 2001 )
    [Crossref]
  16. H. H. Tynes , G. W. Kattawar , E. P. Zege , I. L. Katsev , A. S. Prikhach , and L. I. Chaikovskaya , “ Monte Carlo and Multicomponent Approximation Methods for Vector Radiative Transfer by use of Effective Mueller Matrix Calculations ,” Appl. Opt.   40 , 400 – 412 ( 2001 )
    [Crossref]
  17. B. Kaplan , G. Ledanois , and B. villon , “ Mueller Matrix of Dense Polystyrene Latex Sphere Suspensions: Measurements and Monte Carlo Simulation ,” Appl. Opt.   40 , 2769 – 2777 ( 2001 )
    [Crossref]
  18. X. Wang and L. V. Wang , “ Propagation of polarized light in birefringent turbid media: A Monte Carlo study ,” J. Biomed. Opt.   7 , 279 – 290 ( 2002 )
    [Crossref] [PubMed]
  19. I. Lux and L. Koblinger , Monte Carlo Particle Transport Methods: Neutron and Photon Calculations ( CRC Press, Boca Ration, Fla., 1991 )
  20. G. W. Kattawar and G. N. Plass , “ Radiance and polarization of multiple scattered light from haze and clouds ,” Appl. Opt.   7 , 1519 – 1527 ( 1968 )
    [Crossref] [PubMed]
  21. E. Okada and D. T. Delpy “ Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal ” Appl. Opt.   42 , 2915 – 2922 ( 2003 )
    [Crossref] [PubMed]
  22. D. A. Boas , J. P. Culver , J. J. Stott , and A. K. Dunn , “ Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head ,” Opt. Express   10 , 159 – 170 ( 2002 ), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-159
    [PubMed]
  23. C. F. Bohren and D. R. Huffman , “ Absorption and Scattering of Light by Small Particles ,” John Wiley & Sons, 1983
  24. D. Haensse , P. Szabo , D. Brown , J. Fauchere , P. Niederer , H. Bucher , and M. Wolf , “ New multichannel near infrared spectrophotometry system for functional studies of the brain in adults and neonates ,” Opt. Express   13 , 4525 – 4538 ( 2005 ), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4525
    [Crossref] [PubMed]
  25. M. A. Franceschini and D. A. Boas , “ Noninvasive measurement of neuronal activity with near-infrared optical imaging ,” NeuroImage   21 , 372 – 386 ( 2004 )
    [Crossref] [PubMed]
  26. J. C. Ramella-Roman , S. A. Prahl , and S. L. Jacques , “ Three Monte Carlo programs of polarized light transport into scattering media: Part I ,” Opt. Express   13 , 4420 – 4438 ( 2005 ), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4420
    [Crossref] [PubMed]
  27. X. Wang and L. V. Wang , “ Propagation of polarized light in birefringent turbid media: A Monte Carlo study ,” J. Biomed. Opt.   7 , 279 – 290 ( 2002 )
    [Crossref] [PubMed]
  28. L. H. Wang , S. L. Jacques , and L-Q Zheng , “ MCML - Monte Carlo modeling of photon transport in multi-layered tissues ,” Computer Methods and Programs in Biomedicine   47 , 131 – 146 ( 1995 ).
    [Crossref] [PubMed]

2005 (2)

2004 (2)

M. A. Franceschini and D. A. Boas , “ Noninvasive measurement of neuronal activity with near-infrared optical imaging ,” NeuroImage   21 , 372 – 386 ( 2004 )
[Crossref] [PubMed]

G. Boas , “ Noninvasive Imaging of the Brain ,” Optics News   15 , 52 – 55 ( 2004 )

2003 (5)

2002 (3)

D. A. Boas , J. P. Culver , J. J. Stott , and A. K. Dunn , “ Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head ,” Opt. Express   10 , 159 – 170 ( 2002 ), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-159
[PubMed]

X. Wang and L. V. Wang , “ Propagation of polarized light in birefringent turbid media: A Monte Carlo study ,” J. Biomed. Opt.   7 , 279 – 290 ( 2002 )
[Crossref] [PubMed]

X. Wang and L. V. Wang , “ Propagation of polarized light in birefringent turbid media: A Monte Carlo study ,” J. Biomed. Opt.   7 , 279 – 290 ( 2002 )
[Crossref] [PubMed]

2001 (3)

2000 (1)

1999 (2)

1997 (1)

A. Villringer and B. Chance , “ Non-invasive optical spectroscopy and imaging of human brain function ,” Trends Neurosci .   20 , 435 – 442 ( 1997 )
[Crossref] [PubMed]

1996 (1)

S.K. Gayen and R.R. Alfano , “ Emerging optical biomedical imaging techniques ,” Opt. Photon. News   7 , 17 – 22 ( 1996 )
[Crossref]

1995 (2)

A. Yodh and B. Chance , “ Spectroscopy and imaging with diffusing light ,” Phys. Today   48 , 38 – 40 ( 1995 )
[Crossref]

L. H. Wang , S. L. Jacques , and L-Q Zheng , “ MCML - Monte Carlo modeling of photon transport in multi-layered tissues ,” Computer Methods and Programs in Biomedicine   47 , 131 – 146 ( 1995 ).
[Crossref] [PubMed]

1993 (2)

A. Villringer , J. Planck , C. Hock , L. schleinkofer , and U. Dirnagl , “ Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults ,” Neurosci. Lett.   154 , 101 – 104 ( 1993 )
[Crossref] [PubMed]

P. Bruscaglioni , G. Zaccanti , and Q. Wei , “ Transmission of a pulsed polarized light beam through thick turbid media: numerical results ,” Appl. Opt.   32 , 6142 – 6150 ( 1993 )
[Crossref] [PubMed]

1968 (1)

Ajichi, Y.

Alfano, R.R.

S.K. Gayen and R.R. Alfano , “ Emerging optical biomedical imaging techniques ,” Opt. Photon. News   7 , 17 – 22 ( 1996 )
[Crossref]

Arridge, S. R.

S. R. Arridge , “ Optical tomography in medical imaging ,” Inverse Problems   15 , R41 – R93 ( 1999 )
[Crossref]

Bartel, S.

Boas, D. A.

Boas, G.

Bohren, C. F.

C. F. Bohren and D. R. Huffman , “ Absorption and Scattering of Light by Small Particles ,” John Wiley & Sons, 1983

Brown, D.

Bruscaglioni, P.

Bucher, H.

Cameron, B.D.

Chaikovskaya, L. I.

Chance, B.

A. Villringer and B. Chance , “ Non-invasive optical spectroscopy and imaging of human brain function ,” Trends Neurosci .   20 , 435 – 442 ( 1997 )
[Crossref] [PubMed]

A. Yodh and B. Chance , “ Spectroscopy and imaging with diffusing light ,” Phys. Today   48 , 38 – 40 ( 1995 )
[Crossref]

Cote, G. L.

Culver, J. P.

Delpy, D. T.

Delpy, D.T.

Dirnagl, U.

A. Villringer , J. Planck , C. Hock , L. schleinkofer , and U. Dirnagl , “ Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults ,” Neurosci. Lett.   154 , 101 – 104 ( 1993 )
[Crossref] [PubMed]

Dunn, A. K.

Fauchere, J.

Franceschini, M. A.

M. A. Franceschini and D. A. Boas , “ Noninvasive measurement of neuronal activity with near-infrared optical imaging ,” NeuroImage   21 , 372 – 386 ( 2004 )
[Crossref] [PubMed]

Fukui, Y.

Gayen, S.K.

S.K. Gayen and R.R. Alfano , “ Emerging optical biomedical imaging techniques ,” Opt. Photon. News   7 , 17 – 22 ( 1996 )
[Crossref]

Haensse, D.

Hayashi, T.

Hielscher, A. H.

Hock, C.

A. Villringer , J. Planck , C. Hock , L. schleinkofer , and U. Dirnagl , “ Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults ,” Neurosci. Lett.   154 , 101 – 104 ( 1993 )
[Crossref] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman , “ Absorption and Scattering of Light by Small Particles ,” John Wiley & Sons, 1983

Ichikawa, N.

Ishimaru, A.

A. Ishimaru , Wave propagation and scattering in random media, I and II ( Academic, New York, 1978 )

Jacques, S. L.

J. C. Ramella-Roman , S. A. Prahl , and S. L. Jacques , “ Three Monte Carlo programs of polarized light transport into scattering media: Part I ,” Opt. Express   13 , 4420 – 4438 ( 2005 ), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4420
[Crossref] [PubMed]

L. H. Wang , S. L. Jacques , and L-Q Zheng , “ MCML - Monte Carlo modeling of photon transport in multi-layered tissues ,” Computer Methods and Programs in Biomedicine   47 , 131 – 146 ( 1995 ).
[Crossref] [PubMed]

Kaplan, B.

Kashio, Y.

Katsev, I. L.

Kattawar, G. W.

Kattawar, G.W.

Kawaguchi, H.

Keller, J. B.

Koblinger, L.

I. Lux and L. Koblinger , Monte Carlo Particle Transport Methods: Neutron and Photon Calculations ( CRC Press, Boca Ration, Fla., 1991 )

Koizumi, H.

Ledanois, G.

Lux, I.

I. Lux and L. Koblinger , Monte Carlo Particle Transport Methods: Neutron and Photon Calculations ( CRC Press, Boca Ration, Fla., 1991 )

Maki, A.

Mehrbeolu, M.

Moscoso, M.

Niederer, P.

Okada, E.

Papanicolaou, G.

Planck, J.

A. Villringer , J. Planck , C. Hock , L. schleinkofer , and U. Dirnagl , “ Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults ,” Neurosci. Lett.   154 , 101 – 104 ( 1993 )
[Crossref] [PubMed]

Plass, G. N.

Prahl, S. A.

Prikhach, A. S.

Rakovic, M. J.

Ramella-Roman, J. C.

Rastegar, S.

Sato, H.

schleinkofer, L.

A. Villringer , J. Planck , C. Hock , L. schleinkofer , and U. Dirnagl , “ Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults ,” Neurosci. Lett.   154 , 101 – 104 ( 1993 )
[Crossref] [PubMed]

Stott, J. J.

Szabo, P.

Tynes, H. H.

villon, B.

Villringer, A.

A. Villringer and B. Chance , “ Non-invasive optical spectroscopy and imaging of human brain function ,” Trends Neurosci .   20 , 435 – 442 ( 1997 )
[Crossref] [PubMed]

A. Villringer , J. Planck , C. Hock , L. schleinkofer , and U. Dirnagl , “ Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults ,” Neurosci. Lett.   154 , 101 – 104 ( 1993 )
[Crossref] [PubMed]

Wang, L. H.

L. H. Wang , S. L. Jacques , and L-Q Zheng , “ MCML - Monte Carlo modeling of photon transport in multi-layered tissues ,” Computer Methods and Programs in Biomedicine   47 , 131 – 146 ( 1995 ).
[Crossref] [PubMed]

Wang, L. V.

X. Wang and L. V. Wang , “ Propagation of polarized light in birefringent turbid media: A Monte Carlo study ,” J. Biomed. Opt.   7 , 279 – 290 ( 2002 )
[Crossref] [PubMed]

X. Wang and L. V. Wang , “ Propagation of polarized light in birefringent turbid media: A Monte Carlo study ,” J. Biomed. Opt.   7 , 279 – 290 ( 2002 )
[Crossref] [PubMed]

M. J. Rakovic , G.W. Kattawar , M. Mehrbeolu , B.D. Cameron , L. V. Wang , S. Rastegar , and G. L. Cote , “ Light Backscattering Polarization Patterns from Turbid Media: Theory and Experiment ,” Appl. Opt.   38 , 3399 – 3408 ( 1999 )
[Crossref]

Wang, X.

X. Wang and L. V. Wang , “ Propagation of polarized light in birefringent turbid media: A Monte Carlo study ,” J. Biomed. Opt.   7 , 279 – 290 ( 2002 )
[Crossref] [PubMed]

X. Wang and L. V. Wang , “ Propagation of polarized light in birefringent turbid media: A Monte Carlo study ,” J. Biomed. Opt.   7 , 279 – 290 ( 2002 )
[Crossref] [PubMed]

Wei, Q.

Wolf, M.

Yamamoto, T.

Yamashita, Y.

Yodh, A.

A. Yodh and B. Chance , “ Spectroscopy and imaging with diffusing light ,” Phys. Today   48 , 38 – 40 ( 1995 )
[Crossref]

Zaccanti, G.

Zege, E. P.

Zheng, L-Q

L. H. Wang , S. L. Jacques , and L-Q Zheng , “ MCML - Monte Carlo modeling of photon transport in multi-layered tissues ,” Computer Methods and Programs in Biomedicine   47 , 131 – 146 ( 1995 ).
[Crossref] [PubMed]

Appl. Opt. (11)

Y. Fukui , Y. Ajichi , and E. Okada , “ Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models ,” Appl. Opt.   42 , 2881 – 2887 ( 2003 )
[Crossref] [PubMed]

H. Koizumi , T. Yamamoto , A. Maki , Y. Yamashita , H. Sato , H. Kawaguchi , and N. Ichikawa , “ Optical topography: practical problems and new applications ,” Appl. Opt.   42 , 3054 – 3062 ( 2003 )
[Crossref] [PubMed]

E. Okada and D.T. Delpy “ Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer “ Appl. Opt.   42 , 2906 – 2914 ( 2003 )
[Crossref] [PubMed]

T. Hayashi , Y. Kashio , and E. Okada , “ Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region ,” Appl. Opt.   42 , 2888 – 2896 ( 2003 )
[Crossref] [PubMed]

P. Bruscaglioni , G. Zaccanti , and Q. Wei , “ Transmission of a pulsed polarized light beam through thick turbid media: numerical results ,” Appl. Opt.   32 , 6142 – 6150 ( 1993 )
[Crossref] [PubMed]

M. J. Rakovic , G.W. Kattawar , M. Mehrbeolu , B.D. Cameron , L. V. Wang , S. Rastegar , and G. L. Cote , “ Light Backscattering Polarization Patterns from Turbid Media: Theory and Experiment ,” Appl. Opt.   38 , 3399 – 3408 ( 1999 )
[Crossref]

S. Bartel and A. H. Hielscher , “ Monte Carlo Simulations of the Diffuse Backscattering Mueller Matrix for Highly Scattering Media ,” Appl. Opt.   39 , 1580 – 1588 ( 2000 )
[Crossref]

H. H. Tynes , G. W. Kattawar , E. P. Zege , I. L. Katsev , A. S. Prikhach , and L. I. Chaikovskaya , “ Monte Carlo and Multicomponent Approximation Methods for Vector Radiative Transfer by use of Effective Mueller Matrix Calculations ,” Appl. Opt.   40 , 400 – 412 ( 2001 )
[Crossref]

B. Kaplan , G. Ledanois , and B. villon , “ Mueller Matrix of Dense Polystyrene Latex Sphere Suspensions: Measurements and Monte Carlo Simulation ,” Appl. Opt.   40 , 2769 – 2777 ( 2001 )
[Crossref]

G. W. Kattawar and G. N. Plass , “ Radiance and polarization of multiple scattered light from haze and clouds ,” Appl. Opt.   7 , 1519 – 1527 ( 1968 )
[Crossref] [PubMed]

E. Okada and D. T. Delpy “ Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal ” Appl. Opt.   42 , 2915 – 2922 ( 2003 )
[Crossref] [PubMed]

Computer Methods and Programs in Biomedicine (1)

L. H. Wang , S. L. Jacques , and L-Q Zheng , “ MCML - Monte Carlo modeling of photon transport in multi-layered tissues ,” Computer Methods and Programs in Biomedicine   47 , 131 – 146 ( 1995 ).
[Crossref] [PubMed]

Inverse Problems (1)

S. R. Arridge , “ Optical tomography in medical imaging ,” Inverse Problems   15 , R41 – R93 ( 1999 )
[Crossref]

J. Biomed. Opt. (2)

X. Wang and L. V. Wang , “ Propagation of polarized light in birefringent turbid media: A Monte Carlo study ,” J. Biomed. Opt.   7 , 279 – 290 ( 2002 )
[Crossref] [PubMed]

X. Wang and L. V. Wang , “ Propagation of polarized light in birefringent turbid media: A Monte Carlo study ,” J. Biomed. Opt.   7 , 279 – 290 ( 2002 )
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

NeuroImage (1)

M. A. Franceschini and D. A. Boas , “ Noninvasive measurement of neuronal activity with near-infrared optical imaging ,” NeuroImage   21 , 372 – 386 ( 2004 )
[Crossref] [PubMed]

Neurosci. Lett. (1)

A. Villringer , J. Planck , C. Hock , L. schleinkofer , and U. Dirnagl , “ Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults ,” Neurosci. Lett.   154 , 101 – 104 ( 1993 )
[Crossref] [PubMed]

Opt. Express (3)

Opt. Photon. News (1)

S.K. Gayen and R.R. Alfano , “ Emerging optical biomedical imaging techniques ,” Opt. Photon. News   7 , 17 – 22 ( 1996 )
[Crossref]

Optics News (1)

Phys. Today (1)

A. Yodh and B. Chance , “ Spectroscopy and imaging with diffusing light ,” Phys. Today   48 , 38 – 40 ( 1995 )
[Crossref]

Trends Neurosci (1)

A. Villringer and B. Chance , “ Non-invasive optical spectroscopy and imaging of human brain function ,” Trends Neurosci .   20 , 435 – 442 ( 1997 )
[Crossref] [PubMed]

Other (3)

A. Ishimaru , Wave propagation and scattering in random media, I and II ( Academic, New York, 1978 )

I. Lux and L. Koblinger , Monte Carlo Particle Transport Methods: Neutron and Photon Calculations ( CRC Press, Boca Ration, Fla., 1991 )

C. F. Bohren and D. R. Huffman , “ Absorption and Scattering of Light by Small Particles ,” John Wiley & Sons, 1983

Supplementary Material (6)

» Media 1: MOV (2133 KB)     
» Media 2: MOV (1130 KB)     
» Media 3: MOV (544 KB)     
» Media 4: MOV (510 KB)     
» Media 5: MOV (485 KB)     
» Media 6: MOV (122 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The nine MRI images on the left are corresponding to different depths of the brain. Here, we took 50 images to fill all the voxels. Each MRI image consists of 256×256 pixels. The schematic diagram on the right shows the anatomical structure of the human head.

Fig. 2.
Fig. 2.

The movies show the migration of a pulse of light with 800 nm wavelength through a brain structure. Movies are given for (a) the horizontal cross section, (b) the vertical cross section of human head. The sizes of MOV movie files are 2.08 and 1.1 Mega-Bytes, respectively.

Fig. 3.
Fig. 3.

The movies show the photon migration of the received photons with different distances of source-detector separation (a) 1 cm (b) 2 cm (c) 3 cm in the horizontal cross section of human head. The sizes of MOV movie files are 0.54, 0.51 and 0.49 Mega-Bytes, respectively.

Fig. 4.
Fig. 4.

The distribution of received intensity versus source-detector separation.

Fig. 5.
Fig. 5.

The distributions of ratio of the received intensity from different layers of brain versus the distance of source-detector separation.

Fig. 6.
Fig. 6.

Target zone with the absorption coefficients at 0.36 (background), 0.72, 1.08, 1.44, 1.8, 3.6, 7.2 cm-1

Fig. 7.
Fig. 7.

The movie of received intensity distribution on the surface of head (The size of MOV movie files is 0.12 Mega-Bytes.)

Tables (1)

Tables Icon

Table 1. Optical properties of each tissue

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

p ( s 1 ) = μ t e μ t s 1 .
s 1 = In ( 1 ξ ) μ t ,
i μ ti s i = In ξ ,

Metrics