Abstract

We have simulated the photon migration with various source-detector separations based on a three-dimensional Monte Carlo code. The whole brain MRI structure images are introduced in the simulation, and the brain model is more accurate then the previous studies. The brain model consists of scalp, skull, CSF layer, gray matter, and white matter. We demonstrate dynamic propagating movies under different source-detector separations. The multiple backscattered intensity from every layer of the brain model is obtained by marking the deepest layer which every photon can reach. Also the influences of an absorption target on brain cortex are revealed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. Boas, "Noninvasive imaging of the brain," Optics News 15, 52-55 (2004).
  2. A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci. 20, 435-442 (1997).
    [CrossRef] [PubMed]
  3. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, "Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults," Neurosci. Lett. 154, 101-104 (1993).
    [CrossRef] [PubMed]
  4. Y. Fukui, Y. Ajichi, and E. Okada, "Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models," Appl. Opt. 42, 2881-2887 (2003).
    [CrossRef] [PubMed]
  5. H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, and N. Ichikawa, "Optical topography: practical problems and new applications," Appl. Opt. 42, 3054-3062 (2003).
    [CrossRef] [PubMed]
  6. E. Okada, D. T. Delpy "Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer," Appl. Opt. 42, 2906-2914 (2003).
    [CrossRef] [PubMed]
  7. T. Hayashi, Y. Kashio, and E. Okada, "Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region," Appl. Opt. 42, 2888-2896 (2003).
    [CrossRef] [PubMed]
  8. A. Ishimaru, Wave Propagation and Scattering in Random Media, I and II (Academic, New York, 1978).
  9. A. Yodh and B. Chance, "Spectroscopy and imaging with diffusing light," Phys. Today 48(3), 38-40 (1995).
    [CrossRef]
  10. S. K. Gayen and R. R. Alfano, "Emerging optical biomedical imaging techniques," Opt. Photon. News 7(3), 17-22 (1996).
    [CrossRef]
  11. S. R. Arridge, "Optical tomography in medical imaging," Inverse Problems 15, R41-R93 (1999).
    [CrossRef]
  12. P. Bruscaglioni, G. Zaccanti, and Q. Wei, "Transmission of a pulsed polarized light beam through thick turbid media: numerical results," Appl. Opt. 32, 6142-6150 (1993).
    [CrossRef] [PubMed]
  13. M. J. Rakovic, G. W. Kattawar, M. Mehrbeolu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Cote, "Light backscattering polarization patterns from turbid media: theory and experiment," Appl. Opt. 38, 3399-3408 (1999).
    [CrossRef]
  14. S. Bartel and A. H. Hielscher, "Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media," Appl. Opt. 39, 1580-1588 (2000).
    [CrossRef]
  15. M. Moscoso, J. B. Keller, and G. Papanicolaou, "Depolarization and blurring of optical images by biological tissue," J. Opt. Soc. Am. A 18, 948-960 (2001).
    [CrossRef]
  16. H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, "Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations," Appl. Opt. 40, 400-412 (2001).
    [CrossRef]
  17. B. Kaplan, G. Ledanois, and B. Villon, "Mueller matrix of dense polystyrene latex sphere suspensions: measurements and Monte Carlo simulation," Appl. Opt. 40, 2769-2777 (2001).
    [CrossRef]
  18. X. Wang and L. V. Wang, "Propagation of polarized light in birefringent turbid media: a Monte Carlo study," J. Biomed. Opt. 7, 279-290 (2002).
    [CrossRef] [PubMed]
  19. I. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, Fla., 1991).
  20. G. W. Kattawar and G. N. Plass, "Radiance and polarization of multiple scattered light from haze and clouds," Appl. Opt. 7, 1519-1527 (1968).
    [CrossRef] [PubMed]
  21. E. Okada, D. T. Delpy, "Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal," Appl. Opt. 42, 2915-2922 (2003).
    [CrossRef] [PubMed]
  22. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, �??Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,�?? Opt. Express 10, 159- 170 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-159">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-159</a>.
    [PubMed]
  23. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley, 1983).
  24. D. Haensse, P. Szabo, D. Brown, J. Fauchere, P. Niederer, H. Bucher, and M. Wolf, �??New multichannel near infrared spectrophotometry system for functional studies of the brain in adults and neonates,�?? Opt. Express 13, 4525-4538(2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4525">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4525</a>.
    [CrossRef] [PubMed]
  25. M. A. Franceschini and D. A. Boas, �??Noninvasive measurement of neuronal activity with near-infrared optical imaging,�?? Neuroimage 21, 372-386 (2004).
    [CrossRef] [PubMed]
  26. J. C. Ramella-Roman, S. A. Prahl, S. L. Jacques, �??Three Monte Carlo programs of polarized light transport into scattering media: Part I,�?? Opt. Express 13, 4420-4438 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4420">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4420</a>.
    [CrossRef] [PubMed]
  27. X. Wang and L. V. Wang, �??Propagation of polarized light in birefringent turbid media: a Monte Carlo study,�?? J. Biomed. Opt. 7, 279-290 (2002).
    [CrossRef] [PubMed]
  28. L. H. Wang, S. L. Jacques, and L-Q Zheng, �??MCML �?? Monte Carlo modeling of photon transport in multilayered tissues,�?? Comput. Methods Programs Biomed. 47, 131-146 (1995).
    [CrossRef] [PubMed]

Appl. Opt.

G. W. Kattawar and G. N. Plass, "Radiance and polarization of multiple scattered light from haze and clouds," Appl. Opt. 7, 1519-1527 (1968).
[CrossRef] [PubMed]

P. Bruscaglioni, G. Zaccanti, and Q. Wei, "Transmission of a pulsed polarized light beam through thick turbid media: numerical results," Appl. Opt. 32, 6142-6150 (1993).
[CrossRef] [PubMed]

S. Bartel and A. H. Hielscher, "Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media," Appl. Opt. 39, 1580-1588 (2000).
[CrossRef]

M. J. Rakovic, G. W. Kattawar, M. Mehrbeolu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Cote, "Light backscattering polarization patterns from turbid media: theory and experiment," Appl. Opt. 38, 3399-3408 (1999).
[CrossRef]

H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, "Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations," Appl. Opt. 40, 400-412 (2001).
[CrossRef]

Y. Fukui, Y. Ajichi, and E. Okada, "Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models," Appl. Opt. 42, 2881-2887 (2003).
[CrossRef] [PubMed]

T. Hayashi, Y. Kashio, and E. Okada, "Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region," Appl. Opt. 42, 2888-2896 (2003).
[CrossRef] [PubMed]

E. Okada, D. T. Delpy "Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer," Appl. Opt. 42, 2906-2914 (2003).
[CrossRef] [PubMed]

E. Okada, D. T. Delpy, "Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal," Appl. Opt. 42, 2915-2922 (2003).
[CrossRef] [PubMed]

H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, and N. Ichikawa, "Optical topography: practical problems and new applications," Appl. Opt. 42, 3054-3062 (2003).
[CrossRef] [PubMed]

B. Kaplan, G. Ledanois, and B. Villon, "Mueller matrix of dense polystyrene latex sphere suspensions: measurements and Monte Carlo simulation," Appl. Opt. 40, 2769-2777 (2001).
[CrossRef]

Comput. Methods Programs Biomed.

L. H. Wang, S. L. Jacques, and L-Q Zheng, �??MCML �?? Monte Carlo modeling of photon transport in multilayered tissues,�?? Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Inverse Problems

S. R. Arridge, "Optical tomography in medical imaging," Inverse Problems 15, R41-R93 (1999).
[CrossRef]

J. Biomed. Opt.

X. Wang and L. V. Wang, "Propagation of polarized light in birefringent turbid media: a Monte Carlo study," J. Biomed. Opt. 7, 279-290 (2002).
[CrossRef] [PubMed]

X. Wang and L. V. Wang, �??Propagation of polarized light in birefringent turbid media: a Monte Carlo study,�?? J. Biomed. Opt. 7, 279-290 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Neuroimage

M. A. Franceschini and D. A. Boas, �??Noninvasive measurement of neuronal activity with near-infrared optical imaging,�?? Neuroimage 21, 372-386 (2004).
[CrossRef] [PubMed]

Neurosci. Lett.

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, "Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults," Neurosci. Lett. 154, 101-104 (1993).
[CrossRef] [PubMed]

Opt. Express

Opt. Photon. News

S. K. Gayen and R. R. Alfano, "Emerging optical biomedical imaging techniques," Opt. Photon. News 7(3), 17-22 (1996).
[CrossRef]

Optics News

Phys. Today

A. Yodh and B. Chance, "Spectroscopy and imaging with diffusing light," Phys. Today 48(3), 38-40 (1995).
[CrossRef]

Trends Neurosci.

A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci. 20, 435-442 (1997).
[CrossRef] [PubMed]

Other

A. Ishimaru, Wave Propagation and Scattering in Random Media, I and II (Academic, New York, 1978).

I. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, Fla., 1991).

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley, 1983).

Supplementary Material (6)

» Media 1: MOV (2133 KB)     
» Media 2: MOV (1130 KB)     
» Media 3: MOV (544 KB)     
» Media 4: MOV (510 KB)     
» Media 5: MOV (485 KB)     
» Media 6: MOV (122 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The nine MRI images on the left are corresponding to different depths of the brain. Here, we took 50 images to fill all the voxels. Each MRI image consists of 256×256 pixels. The schematic diagram on the right shows the anatomical structure of the human head.

Fig. 2.
Fig. 2.

The movies show the migration of a pulse of light with 800 nm wavelength through a brain structure. Movies are given for (a) the horizontal cross section, (b) the vertical cross section of human head. The sizes of MOV movie files are 2.08 and 1.1 Mega-Bytes, respectively.

Fig. 3.
Fig. 3.

The movies show the photon migration of the received photons with different distances of source-detector separation (a) 1 cm (b) 2 cm (c) 3 cm in the horizontal cross section of human head. The sizes of MOV movie files are 0.54, 0.51 and 0.49 Mega-Bytes, respectively.

Fig. 4.
Fig. 4.

The distribution of received intensity versus source-detector separation.

Fig. 5.
Fig. 5.

The distributions of ratio of the received intensity from different layers of brain versus the distance of source-detector separation.

Fig. 6.
Fig. 6.

Target zone with the absorption coefficients at 0.36 (background), 0.72, 1.08, 1.44, 1.8, 3.6, 7.2 cm-1

Fig. 7.
Fig. 7.

The movie of received intensity distribution on the surface of head (The size of MOV movie files is 0.12 Mega-Bytes.)

Tables (1)

Tables Icon

Table 1. Optical properties of each tissue

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

p ( s 1 ) = μ t e μ t s 1 .
s 1 = In ( 1 ξ ) μ t ,
i μ ti s i = In ξ ,

Metrics