Abstract

A novel methodology for designing wide view circular polarizers is proposed. Both single wavelength and broadband wide-view circular polarizers are discussed. Over the ±85° viewing cone, the light leakage from the crossed circular polarizers is less than 2.87×10-4 using the proposed single wavelength circular polarizers (λ=550 nm) and less than 1.7×10-3 using the proposed broadband circular polarizer (λ=450~650 nm). An example of using the designed broadband, wide-view circular polarizers for enhancing the optical efficiency of a direct-view liquid crystal display is elucidated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays, (Wiley, New York, 2001).
  2. T. H. Yoon, G. D. Lee, and J. C. Kim, �??Nontwist quarter-wave liquid crystal cell for a high-contrast reflective display,�?? Opt. Lett. 25, 1547-1549 (2000).
    [CrossRef]
  3. Y. Iwamoto, Y. Toko, H. Hiramoto, and Y. Iimura, �??Improvement of transmitted light efficiency in SH-LCDs using quarter-wave retardation films,�?? Soc. Inf. Display Tech. Digest 31, 902-905 (2000).
    [CrossRef]
  4. T. Ishinabe, T. Miyashita and T. Uchida, �??Design of a quarter wave plate with wide viewing angle and wide wavelength range for high quality reflective LCDs,�?? Soc. Inf. Display Tech. Digest 32, 906-909 (2001).
    [CrossRef]
  5. Q. Hong, T. X. Wu, and S. T. Wu, �??Optical wave propagation in a cholesteric liquid crystal using the finite element method,�?? Liq. Cryst. 30, 367-375 (2003).
    [CrossRef]
  6. S. Huard, Polarization of Light, (Wiley, New York, 1997).
  7. J. Chen, K. H. Kim, J. J. Jyu, J. H. Souk, J. R. Kelly, and P. J. Bos, �??Optimum film compensation modes for TN and VA LCDs,�?? Soc. Inf. Display Tech. Digest 29, 315-318 (1998).
    [CrossRef]
  8. Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, �??Extraordinary high-contrast and wide-view liquid crystal displays,�?? Appl. Phys. Lett. 86, 121107 (2005).
    [CrossRef]
  9. Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, �??Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal displays,�?? Jpn. J. Appl. Phys. 37, 4822-4828 (1998).
    [CrossRef]
  10. T. Ishinabe, T. Miyashiita, and T. Uchida, �??Novel wide viewing angle polarizer with high achromaticity,�?? Soc. Inf. Display Tech. Digest 31, 1094-1097 (2000).
    [CrossRef]
  11. H. Mori, Y. Itoh, Y. Nishiura, T. Nakamura, and Y. Shinagawa, �??Performance of a novel optical compensation film based on negative birefringence of discotic compound for wide-viewing-angle twisted-nematic liquid-crystal displays,�?? Jpn. J. Appl. Phys. 36, 143-147 (1997).
    [CrossRef]
  12. Y. Huang, T. X. Wu, and S. T. Wu, �??Simulations of liquid-crystal Fabry-Perot etalons by an improved 4�?4 matrix method,�?? J. Appl. Phys. 93, 2490-2495 (2003).
    [CrossRef]
  13. R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, (Wiley, Hoboken, 2004).
  14. S. Pancharatnam, �??Achromatic combinations of birefringent plates,�?? Proc. Ind. Acad. Sci. A 41, 130-144 (1956).
  15. S. H. Hong, Y. H. Jeong, H. Y. Kim, H. M. Cho, W. G. Lee, and S. H. Leea, �??Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode,�?? J. Appl. Phys. 87, 8259-8263 (2000).
    [CrossRef]
  16. R. Lu, X. Zhu, S. T. Wu, Q. Hong, and T. X. Wu, �??Ultrawide-view liquid crystal displays,�?? J. Display Technology, 1, 3-14 (2005).
    [CrossRef]
  17. M. V. K. Chari and S. J. Salon, Numerical Methods in Electromagnetism, (Academic Press, San Diego, 2000).
  18. J. E. Anderson, P. J. Bos, C. Cai, and A. Lien, �??3-dimensional modeling of ridge-fringe field LCDs,�?? Soc. Inf. Display Tech. Digest 30, 628-631 (1999).
    [CrossRef]

Appl. Phys. Lett. (1)

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, �??Extraordinary high-contrast and wide-view liquid crystal displays,�?? Appl. Phys. Lett. 86, 121107 (2005).
[CrossRef]

J. Appl. Phys. (2)

Y. Huang, T. X. Wu, and S. T. Wu, �??Simulations of liquid-crystal Fabry-Perot etalons by an improved 4�?4 matrix method,�?? J. Appl. Phys. 93, 2490-2495 (2003).
[CrossRef]

S. H. Hong, Y. H. Jeong, H. Y. Kim, H. M. Cho, W. G. Lee, and S. H. Leea, �??Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode,�?? J. Appl. Phys. 87, 8259-8263 (2000).
[CrossRef]

J. Display Technology (1)

R. Lu, X. Zhu, S. T. Wu, Q. Hong, and T. X. Wu, �??Ultrawide-view liquid crystal displays,�?? J. Display Technology, 1, 3-14 (2005).
[CrossRef]

Jpn. J. Appl Phys. (1)

H. Mori, Y. Itoh, Y. Nishiura, T. Nakamura, and Y. Shinagawa, �??Performance of a novel optical compensation film based on negative birefringence of discotic compound for wide-viewing-angle twisted-nematic liquid-crystal displays,�?? Jpn. J. Appl. Phys. 36, 143-147 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, �??Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal displays,�?? Jpn. J. Appl. Phys. 37, 4822-4828 (1998).
[CrossRef]

Liq. Cryst. (1)

Q. Hong, T. X. Wu, and S. T. Wu, �??Optical wave propagation in a cholesteric liquid crystal using the finite element method,�?? Liq. Cryst. 30, 367-375 (2003).
[CrossRef]

Opt. Lett. (1)

Proc. Ind. Acad. Sci. A (1)

S. Pancharatnam, �??Achromatic combinations of birefringent plates,�?? Proc. Ind. Acad. Sci. A 41, 130-144 (1956).

Soc. Inf. Display Tech. Digest (5)

J. E. Anderson, P. J. Bos, C. Cai, and A. Lien, �??3-dimensional modeling of ridge-fringe field LCDs,�?? Soc. Inf. Display Tech. Digest 30, 628-631 (1999).
[CrossRef]

Y. Iwamoto, Y. Toko, H. Hiramoto, and Y. Iimura, �??Improvement of transmitted light efficiency in SH-LCDs using quarter-wave retardation films,�?? Soc. Inf. Display Tech. Digest 31, 902-905 (2000).
[CrossRef]

T. Ishinabe, T. Miyashita and T. Uchida, �??Design of a quarter wave plate with wide viewing angle and wide wavelength range for high quality reflective LCDs,�?? Soc. Inf. Display Tech. Digest 32, 906-909 (2001).
[CrossRef]

T. Ishinabe, T. Miyashiita, and T. Uchida, �??Novel wide viewing angle polarizer with high achromaticity,�?? Soc. Inf. Display Tech. Digest 31, 1094-1097 (2000).
[CrossRef]

J. Chen, K. H. Kim, J. J. Jyu, J. H. Souk, J. R. Kelly, and P. J. Bos, �??Optimum film compensation modes for TN and VA LCDs,�?? Soc. Inf. Display Tech. Digest 29, 315-318 (1998).
[CrossRef]

Other (4)

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays, (Wiley, New York, 2001).

S. Huard, Polarization of Light, (Wiley, New York, 1997).

M. V. K. Chari and S. J. Salon, Numerical Methods in Electromagnetism, (Academic Press, San Diego, 2000).

R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, (Wiley, Hoboken, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1.

(a) State of polarization produced by a conventional circular polarizer. The red lines show the states of polarization for θ i = 0° ~ 85° at each fixed ϕ i, where ϕ 1 = 0° ~ 360° with 10° interval. (b) S 3 of the produced state of polarization at different view angles. S 3 = -1 at normal incidence angle and reaches its maximum of -0.829 at θ ι = 85°, θ ι = 130° and 310°. In both figures, λ = 550 nm.

Fig. 2.
Fig. 2.

Conventional crossed circular polarizers: (a) device configuration; (b) iso-transmittance contour showing the light leakage at λ= 550 nm. Ten-layer anti-reflection film is assumed.

Fig. 3.
Fig. 3.

Ten-layer anti-reflection film: (a) refractive indices profile, and (b) transmittance.

Fig. 4.
Fig. 4.

Configuration of a wide-view circular polarizer with a linear polarizer, a quarter-wave plate, and a uniaxial C-plate.

Fig. 5.
Fig. 5.

(a) States of polarization inside a wide-view circular polarizer when dΔn of C-plate equals to 59.9 nm, where θ i = 85°, ϕ 1 = 130°, and λ = 550nm. (b) Variations in the produced S 3 with respect to the dΔn of C-plate when θι = 85°. The configuration of this circular polarizer is shown in Fig. 4.

Fig. 6.
Fig. 6.

(a) State of polarization emerging from a wide-view circular polarizer when the dΔn of C-plate equals to 59.9 nm, red lines show the states of polarization when θ i = 0° ~ 85° at each fixed ϕ 1, where ϕ 1 = 0° ~ 360° with 10° interval. (b) iso-transmittance contour showing the light leakage from the crossed wide-view circular polarizers. The configuration of this circular polarizer is shown in Fig. 4. Ten-layer anti-reflection film is assumed and λ= 550 nm.

Fig. 7.
Fig. 7.

Configuration of a wide-acceptance-angle circular polarizer with one linear polarizer, two uniaxial A-plates, and one uniaxial C-plate.

Fig. 8.
Fig. 8.

(a) States of polarization inside a wide-view circular polarizer at θ i = 85° and ϕ 1 = 130°. Red and blue lines show the states of polarization inside the A- and C-plates, respectively. (b) State of polarization emerging from a wide-view circular polarizer. Red lines show the states of polarization when θ i = 0° ~ 85° at each fixed ϕ i, where ϕ i = 0° ~ 360° with 10° interval. In both figures, the configuration of the circular polarizer is in Fig. 7. λ=550 nm.

Fig. 9.
Fig. 9.

Configuration of a wide-view circular polarizer with one linear polarizer, three uniaxial A-plates and two uniaxial C-plates.

Fig. 10.
Fig. 10.

(a) States of polarization inside a wide-view circular polarizer at θ i = 85° and ϕ i = 130°. Red and blue lines show the states of polarization inside A- and C-plates, respectively. (b) State of polarization emerging from a wide-view circular polarizer. Red lines show the states of polarization when θ i = 0° ~ 85° at each fixed ϕ i, where ϕ i = 0° ~ 360° with 10° interval. In both figures, the configuration of the circular polarizer is shown in Fig. 9. λ=550 nm.

Fig. 11.
Fig. 11.

Crossed wide-view circular polarizers: (a) iso-transmittance contour showing the light leakage at λ = 550 nm; (b) device configuration. The ten-layer anti-reflection film is assumed.

Fig. 12.
Fig. 12.

The calculated S3 as a function of wavelength for the four types of circular polarizers, as described in the insert. The viewing cone is ±85° for the proposed wide-view circular polarizers, and the viewing angle is 0° for the conventional circular polarizers.

Fig. 13.
Fig. 13.

(a) Configuration of a conventional broadband circular polarizer with one linear polarizer, one half-wave plate and one quarter-wave plate. The azimuthal angle of the half-wave plate is 75° with respect to the absorption axis of the polarizer and the azimuthal angle of the quarter-wave plate is 15°. (b) Device configuration of a wide-view broadband circular polarizer with one linear polarizer, five uniaxial A-plates and three uniaxial C-plates.

Fig. 14.
Fig. 14.

The calculated maximum S3 over the ±85° viewing cone as a function of wavelength for the four types of circular polarizers, as described in the insert.

Fig. 15.
Fig. 15.

The calculated maximum light leakage from three-types crossed circular polarizers over the ±85° viewing cone as a function of wavelength. The ten-layer anti-reflection film is assumed.

Fig. 16.
Fig. 16.

(a) Configuration of a high-contrast wide-view VA-LCD with crossed circular polarizers. For this design, the light entering the VA LC layer is circularly polarized light at normal viewing angle. (b) In the bright state, eight domains of LC director distributions are formed at every 45° from 22.5° to and 337.5° with respect to the absorption direction of the polarizer.

Fig. 17.
Fig. 17.

A VA-LCD using crossed broadband wide-view circular polarizers when LC directors form eight domains in the bright state: (a) iso-transmittance contour at λ= 450 nm; (b) iso-contrast contour at λ= 450 nm; c) iso-transmittance contour at λ= 550 nm; (d) iso-contrast contour at λ= 550 nm; e) iso-transmittance contour at λ= 650 nm; (f) iso-contrast contour at λ= 650 nm. The LCD configuration is sketched in Fig. 16.

Fig. 18.
Fig. 18.

Design tolerance of the wide-view single wavelength circular polarizer shown in Fig. 9: (a) variations in the dΔn of A-plates and C-plates; (b) variations in the azimuthal angles of A-plates. The viewing cone is ±85° and λ= 550 nm. Ten-layer anti-reflection film is assumed.

Fig. 19.
Fig. 19.

Design tolerance of the wide-view broadband circular polarizer shown in Fig. 14(b): (a) variations in the dΔn of A-plates and C-plates; (b) variations in the azimuthal angles of A-plates. The viewing cone is ±85° and λ= 550 nm. Ten-layer anti-reflection film is assumed.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ P ( 1 ) ( 2 ) = ( S 1 _ ( 1 ) S 1 _ ( 2 ) ) 2 + ( S 2 _ ( 1 ) S 2 _ ( 2 ) ) 2 + ( S 3 _ ( 1 ) S 3 _ ( 2 ) ) 2 ,
Δ P ( X ) ( RCP ) = P ( X ) P ( RCP ) = 2 ( 1 + S 3 _ ( x ) ) ,
cos t = max 2 ( S 3 _ ( 2 A + 1 C ) + 1 ) ( θ = 0 0 ~ 85 0 , ϕ = 0 0 ~ 360 0 ) ,
2 θ ne _ λ 4 4 θ ne _ λ 2 = 90 0 ,
cos t = max Δ P ( 2 A + 1 C _ λ _ 2 ) ( λ 2 ) ( θ = 0 0 ~ 85 0 , ϕ = 0 0 ~ 360 0 , λ = 450 nm~ 550 nm ) ,
cos t = max 2 ( S 3 _ ( 3 A + 2 C _ λ 4 ) + 1 ) ( θ = 0 0 ~ 85 0 , ϕ = 0 0 ~ 360 0 , λ = 450 nm~ 550 nm )
T = sin 2 ( δ 2 ) .

Metrics