Abstract

In this study we show six bidimensional chromophores designed for high Tg photorefractive polymers with a working wavelength in the near IR. The macroscopic optical properties of a poled polymer which contains the designed chromophores were expressed as a function of the microscopic properties of the chromophores, which were calculated using quantum mechanical methods. Later, the diffraction efficiency of a holographic recording and readout experiment was simulated using the Montemezzani equation for anisotropic materials. Results show that high diffraction efficiencies could be obtained for three important working wavelengths (1064, 1300 and 1500 nm) using these chromophores. Of particular interest are the result for the PMC3b derivative at the telecommunication windows of 1300 nm and 1500 nm and the result for PMC1a derivative at the light source wavelength of 1064 nm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. W. E. Moerner and S. M. Silence, �??Polymeric Photorefractive Materials,�?? Chem. Rev. 94, 127�??155 (1994).
    [CrossRef]
  2. O. Ostroverkhova and W. M. WE, �??Organic photorefractives: Mechanisms, materials, and applications,�?? Chem. Review 104, 3267�??3314 (2004).
    [CrossRef]
  3. B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, and N. Peyghambarian, �??Highly efficient photorefractive polymers for dynamic holography,�?? Opt. Eng. 34, 2213�??2223 (1995).
    [CrossRef]
  4. E. Mecher, F. Gallego-Gomez, H. Tillmann, H. Horhold, J. Hummelen, and K. Meerholz, �??Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,�?? Nature 418, 959�??964 (2002).
    [CrossRef] [PubMed]
  5. O. Ostroverkhova, W. Moerner, M. He, and R. Twieg, �??High-performance photorefractive organic glass with near-infrared sensitivity,�?? Appl. Phys. Lett. 82, 3602�??3604 (2003).
    [CrossRef]
  6. E. Mecher, F. Gallego-Gomez, K. Meerholz, H. Tillmann, H. Horhold, and J. Hummelen, �??Photophysical and redox NIR-sensitivity enhancement in photorefractive polymer composites,�?? ChemPhysChem 5, 277�??284 (2004).
    [CrossRef] [PubMed]
  7. M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schulzgen, N. Peyghambarian, G. W. GA, S. Barlow, and S. M. SR, �??High-performance photorefractive polymer operating at 975 nm,�?? Applied Physics Letter 85, 1095�??1097, (2004).
    [CrossRef]
  8. S. Tay, J. Thomas, M. E. M, G. Li, R. Kippelen, S. Marder, G. Meredith, A. Schulzgen, and N. Peyghambarian, �??Photorefractive polymer composite operating at the optical communication wavelength of 1550 nm,�?? Appl. Phys. Lett. 85, 4561�??4563, (2004).
    [CrossRef]
  9. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, �??Orientationally enhanced photorefractive effect in polymers,�?? J. Opt. Soc. Am. 11, 320, (1994).
    [CrossRef]
  10. R. Wortmann, C. Poga, R. J. Twieg, C. Geletneky, C. R. Moylan, P. M. Lundquist, R. G. D. Voe, P. M. Cotts, H. Horn, J. E. Rice, and D. M. Burland, �??Design of optimized photorefractive polymers: a novel class of chromophores,�?? J. Chem. Phys. 105, 10, 637�??10, 647 (1996).
    [CrossRef]
  11. R. Bittner and C. Br¨auchle and K. Meerholz, �??Influence of the glass-transition temperature and the chromophore content on the grating buildup dynamics of poly(N-vinylcarbazole)-based photorefractive polymers,�?? Appl. Opt. 37, 2843�??2851 (1998).
    [CrossRef]
  12. L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, �??Temperature-induced changes in photopolymer volume holograms,�?? Appl. Phys. Lett. 73, 1337�??1339 (1998).
    [CrossRef]
  13. O. Ostroverkhova, M. He, R. Twieg, and W. E. Moerner, �??Role of temperature in controlling performance of photorefractive organic glasses,�?? ChemPhysChem 4, 732�??744 (2003).
    [CrossRef] [PubMed]
  14. P. Acebal, S. Blaya, and L. Carretero, �??High T-g photorefractive polymers: Influence of the chromophores�?? beta tensor,�?? J. Chem. Phys. 121, 8602�??8610 (2004).
    [CrossRef] [PubMed]
  15. G. Montemezzani and M. Zgonik, �??Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,�?? Phys. Rev. E 55, 1035�??1047 (1997).
    [CrossRef]
  16. H. Kogelnik, �??Coupled wave theory for thick hologram gratings,�?? Bell. Sys. Tech. J. 48, 2909�??2945 (1969).
  17. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, �??Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,�?? J. Opt. Soc. Am. B 4, 968�??976 (1987).
    [CrossRef]
  18. R. Wortmann and D. M. Bishop, �??Effective polarizabilities and local field correctionsfor nonlinear experiments in condensed media,�?? J. Chem. Phys. 108, 1001�??1007 (1998).
    [CrossRef]
  19. V. May and O. Khn, Charge and energy transfer dynamics in molecular system (Wiley-VCH, 2000).
  20. J. S. Schildkraut and A. V. Buettner, �??Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers,�?? J. Appl. Phys. 72, 1888�??1893 (1992).
    [CrossRef]
  21. T. Daubler, R. Bittner, K. Meerholz, V. Cimrova, and D. Neher, �??Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,�?? Phys. Rev. B 61 , 515�??13, 527 (2000).
    [CrossRef]
  22. B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledouxx, J. Zyss, and A. K. Y. Jen, �??The molecular and supramolecular engineering of polymeric electro-optic materials,�?? Chem. Phys. 245, 35�??50 (1999).
    [CrossRef]
  23. S. P. Karna and A. T. Yeates, eds., Nonlinear Optical Materials. Theory and Modeling (American Chemical Society, Washington, 1996).
    [CrossRef]
  24. J. L. Oudar and D. S. Chemla, �??Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment,�?? J. Chem. Phys. 66, 2664�??2668 (1977).
    [CrossRef]
  25. M. Yang and B. Champagne, �??Large Off-diagonal contribution to the second-order optical nonlinearities of �?-shaped molecules,�?? J. Phys. Chem. A 107, 3942�??3951 (2003).
    [CrossRef]
  26. P. Acebal, S. Blaya, and L. Carretero, �??Dipyrromethene-BF2 complexes with optimized electrooptic propeties,�?? Chem. Phys. Lett. 382, 489�??495 (2003).
    [CrossRef]
  27. P. Acebal, S. Blaya, L. Carretero, and A. Fimia, �??Upper limits of dielectric permittivity modulation in bacteriorhodopsin films,�?? Phys. Rev. E 72, 011909 (2005).
    [CrossRef]
  28. W. J. Hehre, L. Radom, P. V. R. Schleyer, and J. A. Pople, Ab initio molecular orbital theory (JohnWiley & Sons Inc., New York, 1986).
  29. M. J. Frisch, G.W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Menucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petereson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople, GAUSSIAN 98, Revision A.7, Gaussian, Inc, Pittsburg PA, 1998.
  30. R. E. Hermes, T. H. Allik, S. Chandra, and J. A. Hutchinson, �??High-efficiency pyrromethene doped solid-state dye lasers,�?? Appl. Phys. Lett. 63, 877�??879 (1993).
    [CrossRef]
  31. M. Wada, S. Ito, H. Uno, T. Murashima, N. Ono, T. Urano, and Y. Urano, �??Synthesis and optical properties of a new class of pyrromethene-BF2 complexes fused with bicyclo rings and benzo derivatives,�?? Tetrahedron Lett. 42, 6711�??6713 (2001).
    [CrossRef]
  32. G. Jones, Z. Huang, S. Kumar, and D. Pacheco, �??Fluorescence and Lasing properties of benzo-fused pyrromethene dyes in poly(methyl methacrylate) solid host media,�?? in Proc. Solid State Lasers XI, vol. 4630 (SPIE, 2002).
  33. K. Rurack, M. Kollmannsberger, and J. Daub, �??Molecular Switching in the near infrared (NIR) with a functionalized boron-dipyrromethene dye,�?? Angew. Chem. Int. Ed. 40, 385�??387 (2001).
    [CrossRef]
  34. M. Shah, K. Thangaraj, M. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, and T. G. Pavlopoulos, �??Pyrromethene-BF2 Complexes as laser dyes:1,�?? Heteroatom Chemistry 1, 389�??399 (1990).
    [CrossRef]
  35. P. Acebal, S. Blaya, and L. Carretero, �??Theoretical study of second-order non-linear optical propeties of pyrromethene dyes for photonic application,�?? J. Phys. B: At. Mol. Opt. Phys. 36, 2445�??2454 (2003).
    [CrossRef]
  36. T. L. Arbeloa, F. L. Arbeloa, I. L. Arbeloa, I. Garc´ýa-Moreno, A. Costela, R. Sastre, and F. Amat-Guerri, �??Correlations between photophysics and lasing properties of dipyrromethene-BF2 dyes in solution,�?? Chem. Phys. Lett. 299, 315�??321 (1999).
    [CrossRef]
  37. H. S. Nalwa and S. Miyata, Nonlinear optics of organic molecules and polymers (CRC Press, London, 1997).

Angew. Chem. Int. Ed. (1)

K. Rurack, M. Kollmannsberger, and J. Daub, �??Molecular Switching in the near infrared (NIR) with a functionalized boron-dipyrromethene dye,�?? Angew. Chem. Int. Ed. 40, 385�??387 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, �??Temperature-induced changes in photopolymer volume holograms,�?? Appl. Phys. Lett. 73, 1337�??1339 (1998).
[CrossRef]

O. Ostroverkhova, W. Moerner, M. He, and R. Twieg, �??High-performance photorefractive organic glass with near-infrared sensitivity,�?? Appl. Phys. Lett. 82, 3602�??3604 (2003).
[CrossRef]

S. Tay, J. Thomas, M. E. M, G. Li, R. Kippelen, S. Marder, G. Meredith, A. Schulzgen, and N. Peyghambarian, �??Photorefractive polymer composite operating at the optical communication wavelength of 1550 nm,�?? Appl. Phys. Lett. 85, 4561�??4563, (2004).
[CrossRef]

R. E. Hermes, T. H. Allik, S. Chandra, and J. A. Hutchinson, �??High-efficiency pyrromethene doped solid-state dye lasers,�?? Appl. Phys. Lett. 63, 877�??879 (1993).
[CrossRef]

Applied Physics Letter (1)

M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schulzgen, N. Peyghambarian, G. W. GA, S. Barlow, and S. M. SR, �??High-performance photorefractive polymer operating at 975 nm,�?? Applied Physics Letter 85, 1095�??1097, (2004).
[CrossRef]

Bell. Sys. Tech. J. (1)

H. Kogelnik, �??Coupled wave theory for thick hologram gratings,�?? Bell. Sys. Tech. J. 48, 2909�??2945 (1969).

Chem. Phys. (1)

B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledouxx, J. Zyss, and A. K. Y. Jen, �??The molecular and supramolecular engineering of polymeric electro-optic materials,�?? Chem. Phys. 245, 35�??50 (1999).
[CrossRef]

Chem. Phys. Lett. (2)

P. Acebal, S. Blaya, and L. Carretero, �??Dipyrromethene-BF2 complexes with optimized electrooptic propeties,�?? Chem. Phys. Lett. 382, 489�??495 (2003).
[CrossRef]

T. L. Arbeloa, F. L. Arbeloa, I. L. Arbeloa, I. Garc´ýa-Moreno, A. Costela, R. Sastre, and F. Amat-Guerri, �??Correlations between photophysics and lasing properties of dipyrromethene-BF2 dyes in solution,�?? Chem. Phys. Lett. 299, 315�??321 (1999).
[CrossRef]

Chem. Rev. (1)

W. E. Moerner and S. M. Silence, �??Polymeric Photorefractive Materials,�?? Chem. Rev. 94, 127�??155 (1994).
[CrossRef]

Chem. Review (1)

O. Ostroverkhova and W. M. WE, �??Organic photorefractives: Mechanisms, materials, and applications,�?? Chem. Review 104, 3267�??3314 (2004).
[CrossRef]

ChemPhysChem (2)

E. Mecher, F. Gallego-Gomez, K. Meerholz, H. Tillmann, H. Horhold, and J. Hummelen, �??Photophysical and redox NIR-sensitivity enhancement in photorefractive polymer composites,�?? ChemPhysChem 5, 277�??284 (2004).
[CrossRef] [PubMed]

O. Ostroverkhova, M. He, R. Twieg, and W. E. Moerner, �??Role of temperature in controlling performance of photorefractive organic glasses,�?? ChemPhysChem 4, 732�??744 (2003).
[CrossRef] [PubMed]

Heteroatom Chemistry (1)

M. Shah, K. Thangaraj, M. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, and T. G. Pavlopoulos, �??Pyrromethene-BF2 Complexes as laser dyes:1,�?? Heteroatom Chemistry 1, 389�??399 (1990).
[CrossRef]

J. Appl. Phys. (1)

J. S. Schildkraut and A. V. Buettner, �??Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers,�?? J. Appl. Phys. 72, 1888�??1893 (1992).
[CrossRef]

J. Chem. Phys. (4)

R. Wortmann, C. Poga, R. J. Twieg, C. Geletneky, C. R. Moylan, P. M. Lundquist, R. G. D. Voe, P. M. Cotts, H. Horn, J. E. Rice, and D. M. Burland, �??Design of optimized photorefractive polymers: a novel class of chromophores,�?? J. Chem. Phys. 105, 10, 637�??10, 647 (1996).
[CrossRef]

J. L. Oudar and D. S. Chemla, �??Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment,�?? J. Chem. Phys. 66, 2664�??2668 (1977).
[CrossRef]

P. Acebal, S. Blaya, and L. Carretero, �??High T-g photorefractive polymers: Influence of the chromophores�?? beta tensor,�?? J. Chem. Phys. 121, 8602�??8610 (2004).
[CrossRef] [PubMed]

R. Wortmann and D. M. Bishop, �??Effective polarizabilities and local field correctionsfor nonlinear experiments in condensed media,�?? J. Chem. Phys. 108, 1001�??1007 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, �??Orientationally enhanced photorefractive effect in polymers,�?? J. Opt. Soc. Am. 11, 320, (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B: At. Mol. Opt. Phys. (1)

P. Acebal, S. Blaya, and L. Carretero, �??Theoretical study of second-order non-linear optical propeties of pyrromethene dyes for photonic application,�?? J. Phys. B: At. Mol. Opt. Phys. 36, 2445�??2454 (2003).
[CrossRef]

J. Phys. Chem. A (1)

M. Yang and B. Champagne, �??Large Off-diagonal contribution to the second-order optical nonlinearities of �?-shaped molecules,�?? J. Phys. Chem. A 107, 3942�??3951 (2003).
[CrossRef]

Nature (1)

E. Mecher, F. Gallego-Gomez, H. Tillmann, H. Horhold, J. Hummelen, and K. Meerholz, �??Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,�?? Nature 418, 959�??964 (2002).
[CrossRef] [PubMed]

Opt. Eng. (1)

B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, and N. Peyghambarian, �??Highly efficient photorefractive polymers for dynamic holography,�?? Opt. Eng. 34, 2213�??2223 (1995).
[CrossRef]

Phys. Rev. B (1)

T. Daubler, R. Bittner, K. Meerholz, V. Cimrova, and D. Neher, �??Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,�?? Phys. Rev. B 61 , 515�??13, 527 (2000).
[CrossRef]

Phys. Rev. E (2)

P. Acebal, S. Blaya, L. Carretero, and A. Fimia, �??Upper limits of dielectric permittivity modulation in bacteriorhodopsin films,�?? Phys. Rev. E 72, 011909 (2005).
[CrossRef]

G. Montemezzani and M. Zgonik, �??Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,�?? Phys. Rev. E 55, 1035�??1047 (1997).
[CrossRef]

Proc. Solid State Lasers XI, SPIE, 2002 (1)

G. Jones, Z. Huang, S. Kumar, and D. Pacheco, �??Fluorescence and Lasing properties of benzo-fused pyrromethene dyes in poly(methyl methacrylate) solid host media,�?? in Proc. Solid State Lasers XI, vol. 4630 (SPIE, 2002).

Tetrahedron Lett. (1)

M. Wada, S. Ito, H. Uno, T. Murashima, N. Ono, T. Urano, and Y. Urano, �??Synthesis and optical properties of a new class of pyrromethene-BF2 complexes fused with bicyclo rings and benzo derivatives,�?? Tetrahedron Lett. 42, 6711�??6713 (2001).
[CrossRef]

Other (5)

W. J. Hehre, L. Radom, P. V. R. Schleyer, and J. A. Pople, Ab initio molecular orbital theory (JohnWiley & Sons Inc., New York, 1986).

M. J. Frisch, G.W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Menucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petereson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople, GAUSSIAN 98, Revision A.7, Gaussian, Inc, Pittsburg PA, 1998.

S. P. Karna and A. T. Yeates, eds., Nonlinear Optical Materials. Theory and Modeling (American Chemical Society, Washington, 1996).
[CrossRef]

V. May and O. Khn, Charge and energy transfer dynamics in molecular system (Wiley-VCH, 2000).

H. S. Nalwa and S. Miyata, Nonlinear optics of organic molecules and polymers (CRC Press, London, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic representation of the standard configuration for a holographic recording and readout experiment. The top left-hand corner shows the definition of the light polarization as the angle between the y axis and the projection of the electric field in the xz plane.

Fig. 2.
Fig. 2.

Schematic representation of the engineered chromophores.

Fig. 3.
Fig. 3.

(A) Simulation of Γ zz (dashed lines) and Γ yy (continuous lines) for the PMC1b (gray color) and PMC2b (black color) chromophores versus the wavelength (Values used in simulations: F p =108 V/m, T=450 K, w cr =0.25 and σ=50 nm (fwhm≈120 nm)). (B) Simulation of the g (g i =(e^i* ϕ ê i ,)/(|ϕ ê i |)) parameter for the PMC2b compound versus the electric field polarization (Values in simulations: νi =90 and w cr =0.25).

Fig. 4.
Fig. 4.

(A) Simulation of χzzz (ω;0,ω) (dashed lines) and χyzy (ω;0,ω) (continuous lines) for the PMC1a (gray) and PMC2a (black) chromophores versus the wavelength (Values used in simulations: F p =108 V/m, T=450 K and w cr =0.25). (B) Simulation of χzzz (ω;0,ω) (dashed lines) and χyzy (ω;0,ω) (continuous lines) for the PMClb (gray) and PMC2b (black) chromophores versus the wavelength (Values used in simulations: F p =108V/m, T=450 K and w cr =0.25).

Fig. 5.
Fig. 5.

Simulation of η of the chromophores versus the weight fraction for three different working wavelengths (experimental conditions explained in the text) for two different values of electric field polarization (ρ=π/2: dashed lines. ρ=0: continuous lines) . (A) PMC1a (black color). PMC1b (grey color). (B) PMC2a (black color). PMC2b (grey color). (C) PMC3a (black color). PMC3b (grey color). (D) PMC3a (black color). PMC3b (grey color).

Tables (1)

Tables Icon

Table 1. Values of the molecular properties calculated with the methods MP2/6–31G (μg β(0) components) and B3LYP/6–31G* (α components and absorption maximums)

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

η = Exp [ 2 d Cos ( ν d ) ( e ̂ d * Γ e ̂ d ) ] sin 2 ( πd ( e ̂ r * Δ ε e ̂ d ) 2 λ ( n r n d g r g d Cos ( ν d ) Cos ( ν r ) ) 1 2 )
χ ii ( ω ; ω ) = χ m ( 0 ) ( 1 w cr ) + χ ii cr ( ω ; ω )
χ ii cr ( ω ; ω ) = N ( α zz * ( ω ; ω ) G ii zz + α yy * ( ω ; ω ) G ii yy + α xx * ( ω ; ω ) G ii xx )
Γ ii ( ω ) = ω N 2 c ħ ε 0 ( μ ge 1 , y 2 G ii yy Exp [ ( ω eq 1 ω ) 2 2 σ 2 ] 2 π σ + μ ge 2 , z 2 G ii zz Exp [ ( ω eq 2 ω ) 2 2 σ 2 ] 2 π σ )
χ ijk ( ω ; 0 , ω ) = N ( β zzz * ( ω ; 0 , ω ) G ijk zzz + β yzy * ( ω ; 0 , ω ) G ijk yzy )
F sc = F w Cos [ ν G ] F q 2 ( 1 + p Cos 2 [ ν G ] ) F q 2 + F w 2
F q = ρ 2 π ε 0 n 2
G zz zz = ϑ 2 ; G zz yy = G yy zz = ( 1 ϑ 2 ) 2 ; G yy yy = ( 1 + ϑ 2 ) 4 ;
G zzz zzz = ϑ 3 ; G zzz yzy = G zyy zzz = G yzy zzz = G yyz zzz = ( ϑ ϑ 3 ) ( 1 + 2 q ) 2 ;
G zyy yzy = G yyz yzy = ( ϑ 3 ( 1 + 2 q ) ϑ ) 4 ; G yzy yzy = ( ϑ 3 ( 1 + 2 q ) + ϑ ( 1 2 q ) ) 4
< ϑ > = ξ 3 ξ 3 45 + 2 ξ 5 945 ξ 7 4725 + 2 ξ 9 93555 ξ W 2 27 + 4 ξ 3 W 2 405 ξ 5 W 2 525 + 8 ξ 7 W 2 25515 1382 ξ 9 W 2 29469825
< ϑ 2 > = 1 3 + 2 ξ 2 45 4 ξ 4 945 + 2 ξ 6 4725 4 ξ 8 93555 + 2764 ξ 10 638512875 4 ξ 2 W 2 405 + 4 ξ 4 W 2 1575
4 ξ 6 W 2 8505 + 11056 ξ 8 W 2 147349125 8 ξ 10 W 2 729729
< ϑ 3 > = ξ 5 ξ 3 105 + 4 ξ 5 4725 13 ξ 7 155925 + 1786 ξ 9 212837625 ξ W 2 45 + 22 ξ 3 W 2 4725 ξ 5 W 2 1215 +
+ 712 ξ 7 W 2 5457375 194 ξ 9 W 2 10135125
α ii ( ω ; ω ) = e α ii , e ( 0 ) Ω e ω eg , ω e , e s α ii , e ( 0 ) + α ii , s ( 0 ) ω gs 2 ω gs 2 ω 2
β ijk ( ω ; 0 , ω ) = β ijk ( 0 ) Ω ijk ω eg , ω
Ω zzz ( ω ; 0 , ω ) = ω eg 2 2 ( 3 ω eg 2 2 ω 2 ) 3 ( ω eg 2 2 ω 2 ) 2
Ω yzy ( ω ; 0 , ω ) = Q ω eg 1 2 ( ω eg 1 2 + ω 2 ) ( ω eg 1 2 ω 2 ) 2 + ( 1 Q ) ω eg 1 2 ω eg 1 2 ω 2
Ω zyy ( ω ; 0 , ω ) = Q ω eg 1 2 ω eg 1 2 ω 2 + ( 1 Q ) ω eg 2 ( ω 2 ( ω eg 1 ω eg 2 ) + 2 ω eg 1 2 ω eg 2 ) 2 ( ω 2 ω eg 2 2 ) ( ω 2 ω eg 1 2 )
q = β yyz β yzy = β zyy β yzy

Metrics