Abstract

The modal properties of an air core photonic crystal fiber which incorporates an anti-resonant feature within the region that marks the transition between the air core and the crystal cladding are numerically calculated. The field intensity at the glass/air interfaces is shown to be reduced by a factor of approximately three compared to a fiber with more conventional core surround geometry. The reduced interface field intensity comes at the expense of an increased number of unwanted core interface modes within the band gap. When the interface field intensity is associated with modal propagation loss, the findings are in accord with recent measurements on fabricated fibers which incorporate a similar antiresonant feature.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of low-loss and highly birefringent hollow-core photonic crystal fiber

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T.A. Birks, J. C. Knight, and P. St. J. Russell
Opt. Express 14(16) 7329-7341 (2006)

Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation

R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson
Opt. Express 15(26) 17577-17586 (2007)

Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y.Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid
Opt. Express 21(23) 28597-28608 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibers,” Opt. Express 13, p236 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-236
    [Crossref] [PubMed]
  2. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986)
    [Crossref]
  3. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002)
    [Crossref]
  4. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243
    [Crossref] [PubMed]
  5. P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. de Sterke, and B. J. Eggleton, “Long wavelength anti-resonant guidance in high index inclusion microstructured fibers,” Opt. Express 12, 5424–5433 (2004)
    [Crossref] [PubMed]
  6. A. Fuerbach, P. Steinvurzel, J. A. Bolger, and B. J. Eggleton, “Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers,” Opt. Express 13, 2977–2987 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2977
    [Crossref] [PubMed]
  7. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic band gap fiber,” Opt. Lett. 29, 2369–2371 (2004)
    [Crossref] [PubMed]
  8. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. B. Cordeiro, F. Luan, and Russell, “Photonic bandgap with an index step of one percent,” Opt. Express 13, 309–314 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-309
    [Crossref] [PubMed]
  9. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978)
    [Crossref]
  10. M. Miyagi, “Bending losses in hollow and dielectric tube leaky waveguides,” Applied Opt. 20, 1221–1229 (1981)
    [Crossref]
  11. Y. Matsuura, R. Kasahara, T. Katagiri, and M. Miyagi, “Hollow infrared fibers fabricated by glass-drawing technique,” Opt. Express 10, 488–492 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-12-488
    [PubMed]
  12. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748
    [Crossref] [PubMed]
  13. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers,” Science 301, 1702–1704 (2003)
    [Crossref] [PubMed]
  14. F. Luan, J. C. Knight, P. S. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, “Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12, 835–840 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-835
    [Crossref] [PubMed]
  15. P. J. Roberts, F. Couny, T. A. Birks, J. C. Knight, P. St.J. Russell, B. J. Mangan, H. Sabert, D. P. Williams, and L. Farr, “Achieving low loss and low nonlinearity in hollow core photonic crystal fibers,” in Proc. CLEO 2005 (Baltimore, 2005), paper CWA7
  16. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983)
  17. N. Guan, S. Habu, K. Takenaga, K. Himeno, and A. Wada, “Boundary element method for analysis of holey optical fibers,” J. Lightwave Technol. 21, 1787–1792 (2003)
    [Crossref]
  18. N. A. Mortensen and M. D. Nielsen, “Modeling of realistic cladding structures for air-core photonic band-gap fibers,” Opt. Lett. 29, 349–351 (2004)
    [Crossref] [PubMed]
  19. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173
    [Crossref] [PubMed]
  20. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic band gap fibre,” Nature 424, 657–659 (2003)
    [Crossref] [PubMed]
  21. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485
    [Crossref] [PubMed]
  22. K. Saitoh, N. A. Mortensen, and M. Koshiba, “Air-core photonic band-gap fibers: the impact of surface modes,” Opt. Express 12, 394–400 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394
    [Crossref] [PubMed]
  23. H. K. Kim, M. J. F. Digonnet, G. S. Kino, J. Shin, and S. Fan, “Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers,” Opt. Express 12, 3436–3442 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3436
    [Crossref] [PubMed]
  24. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic band gap fibre,” Proc. Conf. Optical Fiber Commun., paper PDP24 (Los Angeles, 2004)

2005 (3)

2004 (8)

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic band gap fiber,” Opt. Lett. 29, 2369–2371 (2004)
[Crossref] [PubMed]

P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. de Sterke, and B. J. Eggleton, “Long wavelength anti-resonant guidance in high index inclusion microstructured fibers,” Opt. Express 12, 5424–5433 (2004)
[Crossref] [PubMed]

F. Luan, J. C. Knight, P. S. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, “Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12, 835–840 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-835
[Crossref] [PubMed]

N. A. Mortensen and M. D. Nielsen, “Modeling of realistic cladding structures for air-core photonic band-gap fibers,” Opt. Lett. 29, 349–351 (2004)
[Crossref] [PubMed]

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485
[Crossref] [PubMed]

K. Saitoh, N. A. Mortensen, and M. Koshiba, “Air-core photonic band-gap fibers: the impact of surface modes,” Opt. Express 12, 394–400 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394
[Crossref] [PubMed]

H. K. Kim, M. J. F. Digonnet, G. S. Kino, J. Shin, and S. Fan, “Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers,” Opt. Express 12, 3436–3442 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3436
[Crossref] [PubMed]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic band gap fibre,” Proc. Conf. Optical Fiber Commun., paper PDP24 (Los Angeles, 2004)

2003 (4)

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers,” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic band gap fibre,” Nature 424, 657–659 (2003)
[Crossref] [PubMed]

N. Guan, S. Habu, K. Takenaga, K. Himeno, and A. Wada, “Boundary element method for analysis of holey optical fibers,” J. Lightwave Technol. 21, 1787–1792 (2003)
[Crossref]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243
[Crossref] [PubMed]

2002 (2)

2001 (2)

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986)
[Crossref]

1981 (1)

M. Miyagi, “Bending losses in hollow and dielectric tube leaky waveguides,” Applied Opt. 20, 1221–1229 (1981)
[Crossref]

1978 (1)

Abeeluck, A. K.

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers,” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

Allan, D. C.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic band gap fibre,” Nature 424, 657–659 (2003)
[Crossref] [PubMed]

Argyros, A.

Bird, D. M.

Birks, T. A.

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. B. Cordeiro, F. Luan, and Russell, “Photonic bandgap with an index step of one percent,” Opt. Express 13, 309–314 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-309
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibers,” Opt. Express 13, p236 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-236
[Crossref] [PubMed]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic band gap fibre,” Proc. Conf. Optical Fiber Commun., paper PDP24 (Los Angeles, 2004)

P. J. Roberts, F. Couny, T. A. Birks, J. C. Knight, P. St.J. Russell, B. J. Mangan, H. Sabert, D. P. Williams, and L. Farr, “Achieving low loss and low nonlinearity in hollow core photonic crystal fibers,” in Proc. CLEO 2005 (Baltimore, 2005), paper CWA7

Bolger, J. A.

Borrelli, N. F.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic band gap fibre,” Nature 424, 657–659 (2003)
[Crossref] [PubMed]

Campbell, S.

Cordeiro, C. B.

Couny, F.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibers,” Opt. Express 13, p236 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-236
[Crossref] [PubMed]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic band gap fibre,” Proc. Conf. Optical Fiber Commun., paper PDP24 (Los Angeles, 2004)

P. J. Roberts, F. Couny, T. A. Birks, J. C. Knight, P. St.J. Russell, B. J. Mangan, H. Sabert, D. P. Williams, and L. Farr, “Achieving low loss and low nonlinearity in hollow core photonic crystal fibers,” in Proc. CLEO 2005 (Baltimore, 2005), paper CWA7

Coupland, S.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic band gap fibre,” Proc. Conf. Optical Fiber Commun., paper PDP24 (Los Angeles, 2004)

de Sterke, C. M.

de Sterke, M.

Digonnet, M. J. F.

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986)
[Crossref]

Dunn, S. C.

Eggleton, B. J.

Engeness, T. D.

Fan, S.

Farr, L.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibers,” Opt. Express 13, p236 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-236
[Crossref] [PubMed]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic band gap fibre,” Proc. Conf. Optical Fiber Commun., paper PDP24 (Los Angeles, 2004)

P. J. Roberts, F. Couny, T. A. Birks, J. C. Knight, P. St.J. Russell, B. J. Mangan, H. Sabert, D. P. Williams, and L. Farr, “Achieving low loss and low nonlinearity in hollow core photonic crystal fibers,” in Proc. CLEO 2005 (Baltimore, 2005), paper CWA7

Fink, Y.

Flea, R.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic band gap fibre,” Proc. Conf. Optical Fiber Commun., paper PDP24 (Los Angeles, 2004)

Fuerbach, A.

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers,” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic band gap fibre,” Nature 424, 657–659 (2003)
[Crossref] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers,” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

George, A. K.

Guan, N.

Habu, S.

Headley, C.

Hedley, T. D.

Himeno, K.

Ibanescu, M.

Jacobs, S. A.

Joannopoulos, J. D.

Johnson, S. G.

Kasahara, R.

Katagiri, T.

Kim, H. K.

Kino, G. S.

Knight, J. C.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibers,” Opt. Express 13, p236 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-236
[Crossref] [PubMed]

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic band gap fiber,” Opt. Lett. 29, 2369–2371 (2004)
[Crossref] [PubMed]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic band gap fibre,” Proc. Conf. Optical Fiber Commun., paper PDP24 (Los Angeles, 2004)

F. Luan, J. C. Knight, P. S. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, “Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12, 835–840 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-835
[Crossref] [PubMed]

P. J. Roberts, F. Couny, T. A. Birks, J. C. Knight, P. St.J. Russell, B. J. Mangan, H. Sabert, D. P. Williams, and L. Farr, “Achieving low loss and low nonlinearity in hollow core photonic crystal fibers,” in Proc. CLEO 2005 (Baltimore, 2005), paper CWA7

Koch, K. W.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic band gap fibre,” Nature 424, 657–659 (2003)
[Crossref] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers,” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986)
[Crossref]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986)
[Crossref]

Koshiba, M.

Kuhlmey, B. T.

Langford, A.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic band gap fibre,” Proc. Conf. Optical Fiber Commun., paper PDP24 (Los Angeles, 2004)

Lawman, M.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic band gap fibre,” Proc. Conf. Optical Fiber Commun., paper PDP24 (Los Angeles, 2004)

Leon-Saval, S. G.

Litchinitser, N. M.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983)

Luan, F.

Mangan, B. J.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibers,” Opt. Express 13, p236 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-236
[Crossref] [PubMed]

F. Luan, J. C. Knight, P. S. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, “Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12, 835–840 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-835
[Crossref] [PubMed]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic band gap fibre,” Proc. Conf. Optical Fiber Commun., paper PDP24 (Los Angeles, 2004)

P. J. Roberts, F. Couny, T. A. Birks, J. C. Knight, P. St.J. Russell, B. J. Mangan, H. Sabert, D. P. Williams, and L. Farr, “Achieving low loss and low nonlinearity in hollow core photonic crystal fibers,” in Proc. CLEO 2005 (Baltimore, 2005), paper CWA7

Marom, E.

Mason, M.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic band gap fibre,” Proc. Conf. Optical Fiber Commun., paper PDP24 (Los Angeles, 2004)

Mason, M. W.

Matsuura, Y.

McPhedran, R. C.

Miyagi, M.

Mortensen, N. A.

Muller, D.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers,” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic band gap fibre,” Nature 424, 657–659 (2003)
[Crossref] [PubMed]

Nielsen, M. D.

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers,” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

Pearce, G. J.

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986)
[Crossref]

Reid, D. T.

Roberts, P. J.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibers,” Opt. Express 13, p236 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-236
[Crossref] [PubMed]

F. Luan, J. C. Knight, P. S. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, “Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12, 835–840 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-835
[Crossref] [PubMed]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic band gap fibre,” Proc. Conf. Optical Fiber Commun., paper PDP24 (Los Angeles, 2004)

P. J. Roberts, F. Couny, T. A. Birks, J. C. Knight, P. St.J. Russell, B. J. Mangan, H. Sabert, D. P. Williams, and L. Farr, “Achieving low loss and low nonlinearity in hollow core photonic crystal fibers,” in Proc. CLEO 2005 (Baltimore, 2005), paper CWA7

Russell,

Russell, P. S. J.

Russell, P. St. J.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic band gap fibre,” Proc. Conf. Optical Fiber Commun., paper PDP24 (Los Angeles, 2004)

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic band gap fiber,” Opt. Lett. 29, 2369–2371 (2004)
[Crossref] [PubMed]

Russell, P. St.J.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibers,” Opt. Express 13, p236 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-236
[Crossref] [PubMed]

P. J. Roberts, F. Couny, T. A. Birks, J. C. Knight, P. St.J. Russell, B. J. Mangan, H. Sabert, D. P. Williams, and L. Farr, “Achieving low loss and low nonlinearity in hollow core photonic crystal fibers,” in Proc. CLEO 2005 (Baltimore, 2005), paper CWA7

Sabert, H.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibers,” Opt. Express 13, p236 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-236
[Crossref] [PubMed]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic band gap fibre,” Proc. Conf. Optical Fiber Commun., paper PDP24 (Los Angeles, 2004)

P. J. Roberts, F. Couny, T. A. Birks, J. C. Knight, P. St.J. Russell, B. J. Mangan, H. Sabert, D. P. Williams, and L. Farr, “Achieving low loss and low nonlinearity in hollow core photonic crystal fibers,” in Proc. CLEO 2005 (Baltimore, 2005), paper CWA7

Saitoh, K.

Shin, J.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers,” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

Skorobogatiy, M.

Smith, C. M.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic band gap fibre,” Nature 424, 657–659 (2003)
[Crossref] [PubMed]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983)

Soljacic, M.

Steinvurzel, P.

Takenaga, K.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers,” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

Tomlinson, A.

Usner, B.

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers,” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic band gap fibre,” Nature 424, 657–659 (2003)
[Crossref] [PubMed]

Wada, A.

Weisberg, O.

West, J. A.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic band gap fibre,” Nature 424, 657–659 (2003)
[Crossref] [PubMed]

White, T. P.

Williams, D. P.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibers,” Opt. Express 13, p236 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-236
[Crossref] [PubMed]

F. Luan, J. C. Knight, P. S. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, “Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12, 835–840 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-835
[Crossref] [PubMed]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic band gap fibre,” Proc. Conf. Optical Fiber Commun., paper PDP24 (Los Angeles, 2004)

P. J. Roberts, F. Couny, T. A. Birks, J. C. Knight, P. St.J. Russell, B. J. Mangan, H. Sabert, D. P. Williams, and L. Farr, “Achieving low loss and low nonlinearity in hollow core photonic crystal fibers,” in Proc. CLEO 2005 (Baltimore, 2005), paper CWA7

Xiao, D.

Yariv, A.

Yeh, P.

Appl. Phys. Lett. (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986)
[Crossref]

Applied Opt. (1)

M. Miyagi, “Bending losses in hollow and dielectric tube leaky waveguides,” Applied Opt. 20, 1221–1229 (1981)
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Nature (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic band gap fibre,” Nature 424, 657–659 (2003)
[Crossref] [PubMed]

Opt. Express (12)

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485
[Crossref] [PubMed]

K. Saitoh, N. A. Mortensen, and M. Koshiba, “Air-core photonic band-gap fibers: the impact of surface modes,” Opt. Express 12, 394–400 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394
[Crossref] [PubMed]

H. K. Kim, M. J. F. Digonnet, G. S. Kino, J. Shin, and S. Fan, “Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers,” Opt. Express 12, 3436–3442 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3436
[Crossref] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173
[Crossref] [PubMed]

F. Luan, J. C. Knight, P. S. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, “Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12, 835–840 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-835
[Crossref] [PubMed]

Y. Matsuura, R. Kasahara, T. Katagiri, and M. Miyagi, “Hollow infrared fibers fabricated by glass-drawing technique,” Opt. Express 10, 488–492 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-12-488
[PubMed]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibers,” Opt. Express 13, p236 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-236
[Crossref] [PubMed]

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. B. Cordeiro, F. Luan, and Russell, “Photonic bandgap with an index step of one percent,” Opt. Express 13, 309–314 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-309
[Crossref] [PubMed]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243
[Crossref] [PubMed]

P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. de Sterke, and B. J. Eggleton, “Long wavelength anti-resonant guidance in high index inclusion microstructured fibers,” Opt. Express 12, 5424–5433 (2004)
[Crossref] [PubMed]

A. Fuerbach, P. Steinvurzel, J. A. Bolger, and B. J. Eggleton, “Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers,” Opt. Express 13, 2977–2987 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2977
[Crossref] [PubMed]

Opt. Lett. (3)

Proc. Conf. Optical Fiber Commun. (1)

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Low loss (1.7 dB/km) hollow core photonic band gap fibre,” Proc. Conf. Optical Fiber Commun., paper PDP24 (Los Angeles, 2004)

Science (1)

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers,” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

Other (2)

P. J. Roberts, F. Couny, T. A. Birks, J. C. Knight, P. St.J. Russell, B. J. Mangan, H. Sabert, D. P. Williams, and L. Farr, “Achieving low loss and low nonlinearity in hollow core photonic crystal fibers,” in Proc. CLEO 2005 (Baltimore, 2005), paper CWA7

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Stacks for the fabrication of HC-PCF. The two cases (a) and (b) differ in the thickness of the central inserted core tube. In case (a), the central core tube is chosen so that the core surround of the fabricated fiber is similar to the strut width in the cladding. In case (b), the core tube is thicker so as to produce a core surround of antiresonant thickness.

Fig. 2.
Fig. 2.

(a) The confinement loss of a silica annulus as a function of its thickness t, for core radii R=6 μm and R=10 μm. The wavelength is 1.55 μm. (b) The spatial distribution of the H-field intensity at the antiresonant thickness t=0.37 μm (marked on Fig. 2(a) by the downwards arrow) for the annulus of inner radius R=10 μm. An intensity minimum occurs at the inner interface at this thickness.

Fig. 3.
Fig. 3.

(a) The normalized interface field intensity F, defined by Eq. (2), for a silica annulus plotted as a function of its thickness t. The traces are for inner radii R=6 μm and R=10 μm. The wavelength is 1.55 μm. (b) The light-in-glass power fraction η, defined by Eq. (3), as a function of t for the same inner radius values. Both F and η show minima close to the antiresonance thickness.

Fig. 4.
Fig. 4.

Two designs of HC-PCF whose optical properties are to be compared. In case (a), the core surround has a thickness t=0.094Λ, where Λ is the cladding pitch, which gives antiresonance within the cladding band gap. In case (b), t=0.031Λ, which equals the strut-thickness within the cladding. Both the fibers (a) and (b) have identical cladding structures.

Fig 5.
Fig 5.

The geometry of a cladding unit cell. The claddings of the fibers in Fig. 4 correspond to L 1/L 2=0.6 and w=0.031Λ, with Λ the lattice pitch.

Fig. 6.
Fig. 6.

(a) The normalised interface field intensity F for HE11-like modes, plotted as a function of normalised wavenumber kΛ for the two fibers shown in Fig. 4. (b) The light-in-glass power fraction, η, as a function of normalized wavenumber for the HE11-like modes of these fibers.

Fig. 7.
Fig. 7.

The normalised interface field intensity F plotted against the light-in-glass power fraction, η for the fiber with an antiresonant core surround. Each dot corresponds to a different wavenumber within the band gap.

Fig. 8.
Fig. 8.

The mode field intensity distribution (log scale, 60 dB range shown), for the fiber shown in Fig 4(a), at the wavenumber kΛ=16.9 where the normalised interface field intensity F is minimized. Near nulls appear over much of the inner interface of the core surround.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t = ( 2 j + 1 ) λ ( 4 n gl 2 1 ) ,
F = ( ε 0 μ 0 ) 1 2 hole perimeters d s E 2 A c d S ( E H ) z ̂ ,
η = glass annulus d S ( E H ) . z ̂ A c d S ( E H ) . z ̂ .

Metrics