Abstract

Harmonics-based optical microscopy has been widely applied in biomedical researches due to its noninvasiveness to the studied biomaterials. Due to momentum conservation consideration, most previous studies collect harmonics generation signals in a forward geometry, especially for third harmonic generation signals. However, the adopted forward transmission type geometry is not feasible for future clinical diagnosis. In this paper, first virtual biopsy based on backward propagating optical higher harmonics, combining second harmonic and third harmonic, is demonstrated in the fixed human skin specimens. In our study, third harmonic generation can provide morphologic information including the distribution of basal cells while second harmonic generation can provide distribution of collagen fibers in dermis. Therefore, this technique is ideal for future noninvasive in vivo skin disease examination without dye.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. http://www. skincancerinfo.com/sectionb/biopsy.html
  2. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
    [CrossRef] [PubMed]
  3. M. Rajadhyaksha, S. Gonzalez, J. M. Zavislan, R. R. Aderson, R. H. Webb RH, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
    [CrossRef] [PubMed]
  4. B. R. Masters and P. T. C. So, “Confocal microscopy and multi-photon excitation microscopy of human skin in vivo,” Opt. Express 8, 2–10 (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-1-2
    [CrossRef] [PubMed]
  5. P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophy. J. 85, 572–580 (2003).
    [CrossRef]
  6. L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, “View of normal human skin in vivo as observed using fluorescent fiber-optic confocal microscopic imaging,” J Invest. Dermatol. 121, 706–712 (2003).
    [CrossRef] [PubMed]
  7. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent tomography,” Science 276, 2037–2039 (1997).
    [CrossRef] [PubMed]
  8. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherent tomography,” Opt. Lett. 27, 1803–1805 (2002).
    [CrossRef]
  9. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicron axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
    [CrossRef]
  10. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 249, 73–76 (1990).
    [CrossRef]
  11. E. H. K. Stelzer, S. Hell, S. Lindek, R. Stricker, R. Pick, C. Storz, G. Ritter, and N. Salmon, “Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
    [CrossRef]
  12. B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin” Biophys.J. 72, 2405–2412 (1997)
    [CrossRef] [PubMed]
  13. P. T. C. So, H. Kim, and I. E. Kochevar, “Two photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures,” Opt. Express 3, 339–350 (1998). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-9-339
    [CrossRef] [PubMed]
  14. U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, “Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Research 263, 88–97 (2001)
    [CrossRef]
  15. K. König K, P. T. C. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two photon microscope,” Opt. Lett. 22, 135–136 (1997).
    [CrossRef]
  16. I-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent cell damages in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum. Electron. 34, 1251–1266 (2002).
    [CrossRef]
  17. Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22, 1323–1325 (1997).
    [CrossRef]
  18. G. Peleg, A. Lewis, M. Linial, and L. M. Loew “Nonlinear optical measurement of membrane potential around single molecules at selected celluar sites,” Proc. Natl. Acad. Sci. 96, 6700–6704 (1999).
    [CrossRef] [PubMed]
  19. S.-W. Chu, I.-H. Chen, T.-M. Liu, P.-C. Cheng, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on femtosecond Cr:foristerite laser,” Opt. Lett. 26, 1909–1911 (2001).
    [CrossRef]
  20. E. Brown, T. Mckee, E. Ditomaso, E. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003)
    [CrossRef] [PubMed]
  21. S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, “In vivo developmental biology study using invasive multi-harmonic generation microscopy,” Opt. Express 11, 3093–3099 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3093
    [CrossRef] [PubMed]
  22. C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Harmonics generation microscopy for developmental biology,” J. Struct. Biol. 147, 19–30 (2004).
    [CrossRef] [PubMed]
  23. C.-K. Sun, S.-W. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, “Multi-harmonic-generation biopsy of skin,” Opt. Lett. 28, 2488–2490 (2003).
    [CrossRef] [PubMed]
  24. Y. Barad, H. Eizenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
    [CrossRef]
  25. P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High resolution non-linear optical microscopy of living cells by second harmonic generation,” Biophys. J. 77, 3341–3349 (1999).
    [CrossRef] [PubMed]
  26. A. T. Yeh, N. Nassif, A. Zoumi, and B. Tromberg, “Selective corneal imaging using combined second-harmonic generation and two-photon excited fluorescence,” Opt. Lett. 27, 2082–2084 (2002).
    [CrossRef]
  27. A. Zoumi, A. T. Yeh, and B. Tromberg, “Imaging cells and extracellular matrix in vivo by using second harmonic generation and two photon excited fluorescence,” Proc. Natl. Acad. Sci. 99, 11014–11019 (2002).
    [CrossRef] [PubMed]
  28. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005).
    [CrossRef]
  29. M. Han, G. Giese, and J. F. Bille, “Second harmonic generation imaging of collagen fibrils in cornea and sclera,” Opt. Express 13, 5791–5797 (2005) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-15-5791
    [CrossRef] [PubMed]
  30. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
    [CrossRef]
  31. A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
    [CrossRef]
  32. J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
    [CrossRef]
  33. A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stoke Raman scattering microscopy,” J. Phys. D: Appl. Phys. 38, R59–R81 (2005).
    [CrossRef]
  34. J. X. Cheng and X. S. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B 19, 1604–1610 (2002).
    [CrossRef]
  35. C.-K Sun, S.-W Chu, S.-P. Tai, M. -C. Chan, I - C. Hsiao, C. -H. Lin, Y. -C. Chen, and B. -L. Lin, “Origin of backward second harmonic generation emission in a biological sample examined by laser scanning microscopes”, in Technical Digest of Conference on Laser and Electro-optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2005), Baltimore, MD, USA, paper CWP7 (2005).
  36. T.-H. Tsai, S.-P. Tai, W.-J. Lee, H.-Y. Huang, Y.-H. Liao, and C.-K. Sun, “Signal degradation study in fixed human skin using confocal microscopy and higher-harmonic optical microscopy,” submitted to Biophys. J..
  37. S.-Y. Chen, S.-P. Tai, T.-H. Tsai, and C.-K. Sun, ”Direct backward-emitted third-harmonic generation and its application to clinical microscopy”, in Technical Digest of Conference on Laser and Electro-optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2005), Baltimore, MD, USA, paper QMI3 (2005).
  38. D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169–175 (1999). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-5-8-169
    [CrossRef] [PubMed]
  39. J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-9-315
    [CrossRef] [PubMed]
  40. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 81, 493–508 (2002).
    [CrossRef]
  41. S.-W. Chu, I.-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
    [CrossRef] [PubMed]

2005 (3)

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005).
[CrossRef]

M. Han, G. Giese, and J. F. Bille, “Second harmonic generation imaging of collagen fibrils in cornea and sclera,” Opt. Express 13, 5791–5797 (2005) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-15-5791
[CrossRef] [PubMed]

A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stoke Raman scattering microscopy,” J. Phys. D: Appl. Phys. 38, R59–R81 (2005).
[CrossRef]

2004 (1)

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Harmonics generation microscopy for developmental biology,” J. Struct. Biol. 147, 19–30 (2004).
[CrossRef] [PubMed]

2003 (5)

C.-K. Sun, S.-W. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, “Multi-harmonic-generation biopsy of skin,” Opt. Lett. 28, 2488–2490 (2003).
[CrossRef] [PubMed]

E. Brown, T. Mckee, E. Ditomaso, E. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003)
[CrossRef] [PubMed]

S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, “In vivo developmental biology study using invasive multi-harmonic generation microscopy,” Opt. Express 11, 3093–3099 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3093
[CrossRef] [PubMed]

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophy. J. 85, 572–580 (2003).
[CrossRef]

L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, “View of normal human skin in vivo as observed using fluorescent fiber-optic confocal microscopic imaging,” J Invest. Dermatol. 121, 706–712 (2003).
[CrossRef] [PubMed]

2002 (9)

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherent tomography,” Opt. Lett. 27, 1803–1805 (2002).
[CrossRef]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicron axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[CrossRef]

I-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent cell damages in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum. Electron. 34, 1251–1266 (2002).
[CrossRef]

J. X. Cheng and X. S. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B 19, 1604–1610 (2002).
[CrossRef]

A. T. Yeh, N. Nassif, A. Zoumi, and B. Tromberg, “Selective corneal imaging using combined second-harmonic generation and two-photon excited fluorescence,” Opt. Lett. 27, 2082–2084 (2002).
[CrossRef]

A. Zoumi, A. T. Yeh, and B. Tromberg, “Imaging cells and extracellular matrix in vivo by using second harmonic generation and two photon excited fluorescence,” Proc. Natl. Acad. Sci. 99, 11014–11019 (2002).
[CrossRef] [PubMed]

J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
[CrossRef]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 81, 493–508 (2002).
[CrossRef]

S.-W. Chu, I.-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[CrossRef] [PubMed]

2001 (5)

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
[CrossRef]

A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

S.-W. Chu, I.-H. Chen, T.-M. Liu, P.-C. Cheng, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on femtosecond Cr:foristerite laser,” Opt. Lett. 26, 1909–1911 (2001).
[CrossRef]

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, “Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Research 263, 88–97 (2001)
[CrossRef]

B. R. Masters and P. T. C. So, “Confocal microscopy and multi-photon excitation microscopy of human skin in vivo,” Opt. Express 8, 2–10 (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-1-2
[CrossRef] [PubMed]

1999 (4)

M. Rajadhyaksha, S. Gonzalez, J. M. Zavislan, R. R. Aderson, R. H. Webb RH, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[CrossRef] [PubMed]

G. Peleg, A. Lewis, M. Linial, and L. M. Loew “Nonlinear optical measurement of membrane potential around single molecules at selected celluar sites,” Proc. Natl. Acad. Sci. 96, 6700–6704 (1999).
[CrossRef] [PubMed]

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High resolution non-linear optical microscopy of living cells by second harmonic generation,” Biophys. J. 77, 3341–3349 (1999).
[CrossRef] [PubMed]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169–175 (1999). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-5-8-169
[CrossRef] [PubMed]

1998 (2)

1997 (5)

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin” Biophys.J. 72, 2405–2412 (1997)
[CrossRef] [PubMed]

K. König K, P. T. C. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two photon microscope,” Opt. Lett. 22, 135–136 (1997).
[CrossRef]

Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22, 1323–1325 (1997).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Y. Barad, H. Eizenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

1995 (1)

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

1994 (1)

E. H. K. Stelzer, S. Hell, S. Lindek, R. Stricker, R. Pick, C. Storz, G. Ritter, and N. Salmon, “Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 249, 73–76 (1990).
[CrossRef]

Aderson, R. R.

M. Rajadhyaksha, S. Gonzalez, J. M. Zavislan, R. R. Aderson, R. H. Webb RH, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[CrossRef] [PubMed]

Alfano, R. R.

Anderson, R. R.

M. Rajadhyaksha, S. Gonzalez, J. M. Zavislan, R. R. Aderson, R. H. Webb RH, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[CrossRef] [PubMed]

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

Apolonski, A.

Barad, Y.

Y. Barad, H. Eizenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Bille, J. F.

Bizheva, K.

Book, L. D.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
[CrossRef]

Boppart, S. A.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Boucher, Y.

E. Brown, T. Mckee, E. Ditomaso, E. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003)
[CrossRef] [PubMed]

Bouma, B. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Brakenhoff, G. J.

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Brown, E.

E. Brown, T. Mckee, E. Ditomaso, E. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003)
[CrossRef] [PubMed]

Campagnola, P. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 81, 493–508 (2002).
[CrossRef]

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High resolution non-linear optical microscopy of living cells by second harmonic generation,” Biophys. J. 77, 3341–3349 (1999).
[CrossRef] [PubMed]

Caspers, P. J.

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophy. J. 85, 572–580 (2003).
[CrossRef]

Chan, M. -C.

C.-K Sun, S.-W Chu, S.-P. Tai, M. -C. Chan, I - C. Hsiao, C. -H. Lin, Y. -C. Chen, and B. -L. Lin, “Origin of backward second harmonic generation emission in a biological sample examined by laser scanning microscopes”, in Technical Digest of Conference on Laser and Electro-optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2005), Baltimore, MD, USA, paper CWP7 (2005).

Chen, I.-H.

Chen, I.-S.

S.-W. Chu, I.-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[CrossRef] [PubMed]

Chen, I-H.

I-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent cell damages in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum. Electron. 34, 1251–1266 (2002).
[CrossRef]

Chen, S.-W.

Chen, S.-Y.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Harmonics generation microscopy for developmental biology,” J. Struct. Biol. 147, 19–30 (2004).
[CrossRef] [PubMed]

S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, “In vivo developmental biology study using invasive multi-harmonic generation microscopy,” Opt. Express 11, 3093–3099 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3093
[CrossRef] [PubMed]

S.-Y. Chen, S.-P. Tai, T.-H. Tsai, and C.-K. Sun, ”Direct backward-emitted third-harmonic generation and its application to clinical microscopy”, in Technical Digest of Conference on Laser and Electro-optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2005), Baltimore, MD, USA, paper QMI3 (2005).

Chen, Y. -C.

C.-K Sun, S.-W Chu, S.-P. Tai, M. -C. Chan, I - C. Hsiao, C. -H. Lin, Y. -C. Chen, and B. -L. Lin, “Origin of backward second harmonic generation emission in a biological sample examined by laser scanning microscopes”, in Technical Digest of Conference on Laser and Electro-optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2005), Baltimore, MD, USA, paper CWP7 (2005).

Chen, Y.-C.

Cheng, J. X.

J. X. Cheng and X. S. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B 19, 1604–1610 (2002).
[CrossRef]

J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
[CrossRef]

A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
[CrossRef]

Cheng, P.-C.

I-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent cell damages in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum. Electron. 34, 1251–1266 (2002).
[CrossRef]

S.-W. Chu, I.-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[CrossRef] [PubMed]

S.-W. Chu, I.-H. Chen, T.-M. Liu, P.-C. Cheng, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on femtosecond Cr:foristerite laser,” Opt. Lett. 26, 1909–1911 (2001).
[CrossRef]

Chu, S.-W

C.-K Sun, S.-W Chu, S.-P. Tai, M. -C. Chan, I - C. Hsiao, C. -H. Lin, Y. -C. Chen, and B. -L. Lin, “Origin of backward second harmonic generation emission in a biological sample examined by laser scanning microscopes”, in Technical Digest of Conference on Laser and Electro-optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2005), Baltimore, MD, USA, paper CWP7 (2005).

Chu, S.-W.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Harmonics generation microscopy for developmental biology,” J. Struct. Biol. 147, 19–30 (2004).
[CrossRef] [PubMed]

C.-K. Sun, S.-W. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, “Multi-harmonic-generation biopsy of skin,” Opt. Lett. 28, 2488–2490 (2003).
[CrossRef] [PubMed]

S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, “In vivo developmental biology study using invasive multi-harmonic generation microscopy,” Opt. Express 11, 3093–3099 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3093
[CrossRef] [PubMed]

I-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent cell damages in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum. Electron. 34, 1251–1266 (2002).
[CrossRef]

S.-W. Chu, I.-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[CrossRef] [PubMed]

S.-W. Chu, I.-H. Chen, T.-M. Liu, P.-C. Cheng, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on femtosecond Cr:foristerite laser,” Opt. Lett. 26, 1909–1911 (2001).
[CrossRef]

Delaney, P. M.

L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, “View of normal human skin in vivo as observed using fluorescent fiber-optic confocal microscopic imaging,” J Invest. Dermatol. 121, 706–712 (2003).
[CrossRef] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 249, 73–76 (1990).
[CrossRef]

Ditomaso, E.

E. Brown, T. Mckee, E. Ditomaso, E. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003)
[CrossRef] [PubMed]

Drexler, W.

Eizenberg, H.

Y. Barad, H. Eizenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Esterowitz, D.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

Fercher, A. F.

Freeman, M.

L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, “View of normal human skin in vivo as observed using fluorescent fiber-optic confocal microscopic imaging,” J Invest. Dermatol. 121, 706–712 (2003).
[CrossRef] [PubMed]

Fujimoto, J. G.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Giese, G.

Gonzalez, S.

M. Rajadhyaksha, S. Gonzalez, J. M. Zavislan, R. R. Aderson, R. H. Webb RH, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[CrossRef] [PubMed]

Gratton, E.

K. König K, P. T. C. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two photon microscope,” Opt. Lett. 22, 135–136 (1997).
[CrossRef]

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin” Biophys.J. 72, 2405–2412 (1997)
[CrossRef] [PubMed]

Grossman, M.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

Guo, Y.

Halbhuber, J. J.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, “Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Research 263, 88–97 (2001)
[CrossRef]

Han, M.

Harris, D.

Hell, S.

E. H. K. Stelzer, S. Hell, S. Lindek, R. Stricker, R. Pick, C. Storz, G. Ritter, and N. Salmon, “Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Hermann, B.

Ho, P. P.

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 81, 493–508 (2002).
[CrossRef]

Horowitz, M.

Y. Barad, H. Eizenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Hsiao, I - C.

C.-K Sun, S.-W Chu, S.-P. Tai, M. -C. Chan, I - C. Hsiao, C. -H. Lin, Y. -C. Chen, and B. -L. Lin, “Origin of backward second harmonic generation emission in a biological sample examined by laser scanning microscopes”, in Technical Digest of Conference on Laser and Electro-optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2005), Baltimore, MD, USA, paper CWP7 (2005).

Huang, H.-Y.

T.-H. Tsai, S.-P. Tai, W.-J. Lee, H.-Y. Huang, Y.-H. Liao, and C.-K. Sun, “Signal degradation study in fixed human skin using confocal microscopy and higher-harmonic optical microscopy,” submitted to Biophys. J..

Itoh, M.

Jain, R. K.

E. Brown, T. Mckee, E. Ditomaso, E. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003)
[CrossRef] [PubMed]

K, K. König

Kim, H.

Knight, J. C.

Kochevar, I. E.

König, K.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, “Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Research 263, 88–97 (2001)
[CrossRef]

Krieg, R.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, “Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Research 263, 88–97 (2001)
[CrossRef]

Kuo, M.-X.

S.-W. Chu, I.-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[CrossRef] [PubMed]

Lee, S.-P.

S.-W. Chu, I.-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[CrossRef] [PubMed]

Lee, W.-J.

T.-H. Tsai, S.-P. Tai, W.-J. Lee, H.-Y. Huang, Y.-H. Liao, and C.-K. Sun, “Signal degradation study in fixed human skin using confocal microscopy and higher-harmonic optical microscopy,” submitted to Biophys. J..

Lewis, A.

G. Peleg, A. Lewis, M. Linial, and L. M. Loew “Nonlinear optical measurement of membrane potential around single molecules at selected celluar sites,” Proc. Natl. Acad. Sci. 96, 6700–6704 (1999).
[CrossRef] [PubMed]

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High resolution non-linear optical microscopy of living cells by second harmonic generation,” Biophys. J. 77, 3341–3349 (1999).
[CrossRef] [PubMed]

Liao, Y.-H.

T.-H. Tsai, S.-P. Tai, W.-J. Lee, H.-Y. Huang, Y.-H. Liao, and C.-K. Sun, “Signal degradation study in fixed human skin using confocal microscopy and higher-harmonic optical microscopy,” submitted to Biophys. J..

Lin, B. -L.

C.-K Sun, S.-W Chu, S.-P. Tai, M. -C. Chan, I - C. Hsiao, C. -H. Lin, Y. -C. Chen, and B. -L. Lin, “Origin of backward second harmonic generation emission in a biological sample examined by laser scanning microscopes”, in Technical Digest of Conference on Laser and Electro-optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2005), Baltimore, MD, USA, paper CWP7 (2005).

Lin, B.-L.

C.-K. Sun, S.-W. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, “Multi-harmonic-generation biopsy of skin,” Opt. Lett. 28, 2488–2490 (2003).
[CrossRef] [PubMed]

I-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent cell damages in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum. Electron. 34, 1251–1266 (2002).
[CrossRef]

S.-W. Chu, I.-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[CrossRef] [PubMed]

S.-W. Chu, I.-H. Chen, T.-M. Liu, P.-C. Cheng, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on femtosecond Cr:foristerite laser,” Opt. Lett. 26, 1909–1911 (2001).
[CrossRef]

Lin, C. -H.

C.-K Sun, S.-W Chu, S.-P. Tai, M. -C. Chan, I - C. Hsiao, C. -H. Lin, Y. -C. Chen, and B. -L. Lin, “Origin of backward second harmonic generation emission in a biological sample examined by laser scanning microscopes”, in Technical Digest of Conference on Laser and Electro-optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2005), Baltimore, MD, USA, paper CWP7 (2005).

Lin, C.-Y.

Lin, D.-J.

S.-W. Chu, I.-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[CrossRef] [PubMed]

Lindek, S.

E. H. K. Stelzer, S. Hell, S. Lindek, R. Stricker, R. Pick, C. Storz, G. Ritter, and N. Salmon, “Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Linial, M.

G. Peleg, A. Lewis, M. Linial, and L. M. Loew “Nonlinear optical measurement of membrane potential around single molecules at selected celluar sites,” Proc. Natl. Acad. Sci. 96, 6700–6704 (1999).
[CrossRef] [PubMed]

Liu, F.

Liu, H.-L.

S.-W. Chu, I.-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[CrossRef] [PubMed]

Liu, T.-M.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Harmonics generation microscopy for developmental biology,” J. Struct. Biol. 147, 19–30 (2004).
[CrossRef] [PubMed]

S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, “In vivo developmental biology study using invasive multi-harmonic generation microscopy,” Opt. Express 11, 3093–3099 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3093
[CrossRef] [PubMed]

S.-W. Chu, I.-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[CrossRef] [PubMed]

S.-W. Chu, I.-H. Chen, T.-M. Liu, P.-C. Cheng, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on femtosecond Cr:foristerite laser,” Opt. Lett. 26, 1909–1911 (2001).
[CrossRef]

Loew, L. M.

G. Peleg, A. Lewis, M. Linial, and L. M. Loew “Nonlinear optical measurement of membrane potential around single molecules at selected celluar sites,” Proc. Natl. Acad. Sci. 96, 6700–6704 (1999).
[CrossRef] [PubMed]

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High resolution non-linear optical microscopy of living cells by second harmonic generation,” Biophys. J. 77, 3341–3349 (1999).
[CrossRef] [PubMed]

Lucassen, G. W.

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophy. J. 85, 572–580 (2003).
[CrossRef]

Makita, S.

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 81, 493–508 (2002).
[CrossRef]

Mantulin, W. W.

Masters, B. R.

B. R. Masters and P. T. C. So, “Confocal microscopy and multi-photon excitation microscopy of human skin in vivo,” Opt. Express 8, 2–10 (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-1-2
[CrossRef] [PubMed]

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin” Biophys.J. 72, 2405–2412 (1997)
[CrossRef] [PubMed]

Mckee, T.

E. Brown, T. Mckee, E. Ditomaso, E. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003)
[CrossRef] [PubMed]

Millard, A. C.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 81, 493–508 (2002).
[CrossRef]

Mohler, W. A.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 81, 493–508 (2002).
[CrossRef]

Muller, M.

Nassif, N.

Peleg, G.

G. Peleg, A. Lewis, M. Linial, and L. M. Loew “Nonlinear optical measurement of membrane potential around single molecules at selected celluar sites,” Proc. Natl. Acad. Sci. 96, 6700–6704 (1999).
[CrossRef] [PubMed]

Peuckert, C.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, “Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Research 263, 88–97 (2001)
[CrossRef]

Pick, R.

E. H. K. Stelzer, S. Hell, S. Lindek, R. Stricker, R. Pick, C. Storz, G. Ritter, and N. Salmon, “Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Pluen, E.

E. Brown, T. Mckee, E. Ditomaso, E. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003)
[CrossRef] [PubMed]

Povazay, B.

Puppels, G. J.

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophy. J. 85, 572–580 (2003).
[CrossRef]

Rajadhyaksha, M.

M. Rajadhyaksha, S. Gonzalez, J. M. Zavislan, R. R. Aderson, R. H. Webb RH, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[CrossRef] [PubMed]

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

RH, R. H. Webb

M. Rajadhyaksha, S. Gonzalez, J. M. Zavislan, R. R. Aderson, R. H. Webb RH, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[CrossRef] [PubMed]

Ritter, G.

E. H. K. Stelzer, S. Hell, S. Lindek, R. Stricker, R. Pick, C. Storz, G. Ritter, and N. Salmon, “Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Russell, P. S. J.

Sacks, P.

Salmon, N.

E. H. K. Stelzer, S. Hell, S. Lindek, R. Stricker, R. Pick, C. Storz, G. Ritter, and N. Salmon, “Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Sattmann, H.

Savage, H.

Schantz, S.

Scherzer, E.

Seed, B.

E. Brown, T. Mckee, E. Ditomaso, E. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003)
[CrossRef] [PubMed]

Silberberg, Y.

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169–175 (1999). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-5-8-169
[CrossRef] [PubMed]

Y. Barad, H. Eizenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

So, P. T. C.

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Squier, J. A.

Stelzer, E. H. K.

E. H. K. Stelzer, S. Hell, S. Lindek, R. Stricker, R. Pick, C. Storz, G. Ritter, and N. Salmon, “Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Storz, C.

E. H. K. Stelzer, S. Hell, S. Lindek, R. Stricker, R. Pick, C. Storz, G. Ritter, and N. Salmon, “Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Stricker, R.

E. H. K. Stelzer, S. Hell, S. Lindek, R. Stricker, R. Pick, C. Storz, G. Ritter, and N. Salmon, “Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 249, 73–76 (1990).
[CrossRef]

Sun, C.-K

C.-K Sun, S.-W Chu, S.-P. Tai, M. -C. Chan, I - C. Hsiao, C. -H. Lin, Y. -C. Chen, and B. -L. Lin, “Origin of backward second harmonic generation emission in a biological sample examined by laser scanning microscopes”, in Technical Digest of Conference on Laser and Electro-optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2005), Baltimore, MD, USA, paper CWP7 (2005).

Sun, C.-K.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Harmonics generation microscopy for developmental biology,” J. Struct. Biol. 147, 19–30 (2004).
[CrossRef] [PubMed]

S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, “In vivo developmental biology study using invasive multi-harmonic generation microscopy,” Opt. Express 11, 3093–3099 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3093
[CrossRef] [PubMed]

C.-K. Sun, S.-W. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, “Multi-harmonic-generation biopsy of skin,” Opt. Lett. 28, 2488–2490 (2003).
[CrossRef] [PubMed]

I-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent cell damages in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum. Electron. 34, 1251–1266 (2002).
[CrossRef]

S.-W. Chu, I.-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[CrossRef] [PubMed]

S.-W. Chu, I.-H. Chen, T.-M. Liu, P.-C. Cheng, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on femtosecond Cr:foristerite laser,” Opt. Lett. 26, 1909–1911 (2001).
[CrossRef]

S.-Y. Chen, S.-P. Tai, T.-H. Tsai, and C.-K. Sun, ”Direct backward-emitted third-harmonic generation and its application to clinical microscopy”, in Technical Digest of Conference on Laser and Electro-optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2005), Baltimore, MD, USA, paper QMI3 (2005).

T.-H. Tsai, S.-P. Tai, W.-J. Lee, H.-Y. Huang, Y.-H. Liao, and C.-K. Sun, “Signal degradation study in fixed human skin using confocal microscopy and higher-harmonic optical microscopy,” submitted to Biophys. J..

Sutoh, Y.

Swindle, L. D.

L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, “View of normal human skin in vivo as observed using fluorescent fiber-optic confocal microscopic imaging,” J Invest. Dermatol. 121, 706–712 (2003).
[CrossRef] [PubMed]

Tai, S.-P.

S.-Y. Chen, S.-P. Tai, T.-H. Tsai, and C.-K. Sun, ”Direct backward-emitted third-harmonic generation and its application to clinical microscopy”, in Technical Digest of Conference on Laser and Electro-optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2005), Baltimore, MD, USA, paper QMI3 (2005).

T.-H. Tsai, S.-P. Tai, W.-J. Lee, H.-Y. Huang, Y.-H. Liao, and C.-K. Sun, “Signal degradation study in fixed human skin using confocal microscopy and higher-harmonic optical microscopy,” submitted to Biophys. J..

C.-K Sun, S.-W Chu, S.-P. Tai, M. -C. Chan, I - C. Hsiao, C. -H. Lin, Y. -C. Chen, and B. -L. Lin, “Origin of backward second harmonic generation emission in a biological sample examined by laser scanning microscopes”, in Technical Digest of Conference on Laser and Electro-optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2005), Baltimore, MD, USA, paper CWP7 (2005).

Tearney, G. J.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 81, 493–508 (2002).
[CrossRef]

Thomas, S. G.

L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, “View of normal human skin in vivo as observed using fluorescent fiber-optic confocal microscopic imaging,” J Invest. Dermatol. 121, 706–712 (2003).
[CrossRef] [PubMed]

Tirlapur, U. K.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, “Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Research 263, 88–97 (2001)
[CrossRef]

Tromberg, B.

A. Zoumi, A. T. Yeh, and B. Tromberg, “Imaging cells and extracellular matrix in vivo by using second harmonic generation and two photon excited fluorescence,” Proc. Natl. Acad. Sci. 99, 11014–11019 (2002).
[CrossRef] [PubMed]

A. T. Yeh, N. Nassif, A. Zoumi, and B. Tromberg, “Selective corneal imaging using combined second-harmonic generation and two-photon excited fluorescence,” Opt. Lett. 27, 2082–2084 (2002).
[CrossRef]

Tsai, H.-J.

Tsai, T.-H.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Harmonics generation microscopy for developmental biology,” J. Struct. Biol. 147, 19–30 (2004).
[CrossRef] [PubMed]

C.-K. Sun, S.-W. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, “Multi-harmonic-generation biopsy of skin,” Opt. Lett. 28, 2488–2490 (2003).
[CrossRef] [PubMed]

S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, “In vivo developmental biology study using invasive multi-harmonic generation microscopy,” Opt. Express 11, 3093–3099 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3093
[CrossRef] [PubMed]

T.-H. Tsai, S.-P. Tai, W.-J. Lee, H.-Y. Huang, Y.-H. Liao, and C.-K. Sun, “Signal degradation study in fixed human skin using confocal microscopy and higher-harmonic optical microscopy,” submitted to Biophys. J..

S.-Y. Chen, S.-P. Tai, T.-H. Tsai, and C.-K. Sun, ”Direct backward-emitted third-harmonic generation and its application to clinical microscopy”, in Technical Digest of Conference on Laser and Electro-optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2005), Baltimore, MD, USA, paper QMI3 (2005).

Unterhuber, A.

Vetterlein, M.

Volkmer, A.

A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stoke Raman scattering microscopy,” J. Phys. D: Appl. Phys. 38, R59–R81 (2005).
[CrossRef]

J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
[CrossRef]

A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
[CrossRef]

Wadsworth, W. J.

Webb, R. H.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

Webb, W. W.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005).
[CrossRef]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 249, 73–76 (1990).
[CrossRef]

Wei, M. D.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High resolution non-linear optical microscopy of living cells by second harmonic generation,” Biophys. J. 77, 3341–3349 (1999).
[CrossRef] [PubMed]

Williams, R. M.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005).
[CrossRef]

Wilson, K. R.

Xie, X. S.

J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
[CrossRef]

J. X. Cheng and X. S. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B 19, 1604–1610 (2002).
[CrossRef]

A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
[CrossRef]

Yasuno, Y.

Yatagai, T.

Yeh, A. T.

A. Zoumi, A. T. Yeh, and B. Tromberg, “Imaging cells and extracellular matrix in vivo by using second harmonic generation and two photon excited fluorescence,” Proc. Natl. Acad. Sci. 99, 11014–11019 (2002).
[CrossRef] [PubMed]

A. T. Yeh, N. Nassif, A. Zoumi, and B. Tromberg, “Selective corneal imaging using combined second-harmonic generation and two-photon excited fluorescence,” Opt. Lett. 27, 2082–2084 (2002).
[CrossRef]

Yelin, D.

Zavislan, J. M.

M. Rajadhyaksha, S. Gonzalez, J. M. Zavislan, R. R. Aderson, R. H. Webb RH, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[CrossRef] [PubMed]

Zhadin, N.

Zipfel, W. R.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005).
[CrossRef]

Zoumi, A.

A. Zoumi, A. T. Yeh, and B. Tromberg, “Imaging cells and extracellular matrix in vivo by using second harmonic generation and two photon excited fluorescence,” Proc. Natl. Acad. Sci. 99, 11014–11019 (2002).
[CrossRef] [PubMed]

A. T. Yeh, N. Nassif, A. Zoumi, and B. Tromberg, “Selective corneal imaging using combined second-harmonic generation and two-photon excited fluorescence,” Opt. Lett. 27, 2082–2084 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Barad, H. Eizenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Biophy. J. (1)

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophy. J. 85, 572–580 (2003).
[CrossRef]

Biophys. J. (3)

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High resolution non-linear optical microscopy of living cells by second harmonic generation,” Biophys. J. 77, 3341–3349 (1999).
[CrossRef] [PubMed]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005).
[CrossRef]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 81, 493–508 (2002).
[CrossRef]

Biophys.J. (1)

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin” Biophys.J. 72, 2405–2412 (1997)
[CrossRef] [PubMed]

Exp. Cell Research (1)

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, “Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Research 263, 88–97 (2001)
[CrossRef]

J Invest. Dermatol. (1)

L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, “View of normal human skin in vivo as observed using fluorescent fiber-optic confocal microscopic imaging,” J Invest. Dermatol. 121, 706–712 (2003).
[CrossRef] [PubMed]

J. Invest. Dermatol. (2)

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

M. Rajadhyaksha, S. Gonzalez, J. M. Zavislan, R. R. Aderson, R. H. Webb RH, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999).
[CrossRef] [PubMed]

J. Microsc. (1)

S.-W. Chu, I.-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, “Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,” J. Microsc. 208, Part 3, 190–200 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (1)

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stoke Raman scattering microscopy,” J. Phys. D: Appl. Phys. 38, R59–R81 (2005).
[CrossRef]

J. Struct. Biol. (1)

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Harmonics generation microscopy for developmental biology,” J. Struct. Biol. 147, 19–30 (2004).
[CrossRef] [PubMed]

Nat. Med. (1)

E. Brown, T. Mckee, E. Ditomaso, E. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9, 796–800 (2003)
[CrossRef] [PubMed]

Opt. Commun. (1)

E. H. K. Stelzer, S. Hell, S. Lindek, R. Stricker, R. Pick, C. Storz, G. Ritter, and N. Salmon, “Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Opt. Express (6)

Opt. Lett. (7)

S.-W. Chu, I.-H. Chen, T.-M. Liu, P.-C. Cheng, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on femtosecond Cr:foristerite laser,” Opt. Lett. 26, 1909–1911 (2001).
[CrossRef]

C.-K. Sun, S.-W. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, “Multi-harmonic-generation biopsy of skin,” Opt. Lett. 28, 2488–2490 (2003).
[CrossRef] [PubMed]

A. T. Yeh, N. Nassif, A. Zoumi, and B. Tromberg, “Selective corneal imaging using combined second-harmonic generation and two-photon excited fluorescence,” Opt. Lett. 27, 2082–2084 (2002).
[CrossRef]

K. König K, P. T. C. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two photon microscope,” Opt. Lett. 22, 135–136 (1997).
[CrossRef]

Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22, 1323–1325 (1997).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherent tomography,” Opt. Lett. 27, 1803–1805 (2002).
[CrossRef]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicron axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[CrossRef]

Opt. Quantum. Electron. (1)

I-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent cell damages in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum. Electron. 34, 1251–1266 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

Proc. Natl. Acad. Sci. (2)

A. Zoumi, A. T. Yeh, and B. Tromberg, “Imaging cells and extracellular matrix in vivo by using second harmonic generation and two photon excited fluorescence,” Proc. Natl. Acad. Sci. 99, 11014–11019 (2002).
[CrossRef] [PubMed]

G. Peleg, A. Lewis, M. Linial, and L. M. Loew “Nonlinear optical measurement of membrane potential around single molecules at selected celluar sites,” Proc. Natl. Acad. Sci. 96, 6700–6704 (1999).
[CrossRef] [PubMed]

Science (2)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 249, 73–76 (1990).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherent tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Other (4)

http://www. skincancerinfo.com/sectionb/biopsy.html

C.-K Sun, S.-W Chu, S.-P. Tai, M. -C. Chan, I - C. Hsiao, C. -H. Lin, Y. -C. Chen, and B. -L. Lin, “Origin of backward second harmonic generation emission in a biological sample examined by laser scanning microscopes”, in Technical Digest of Conference on Laser and Electro-optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2005), Baltimore, MD, USA, paper CWP7 (2005).

T.-H. Tsai, S.-P. Tai, W.-J. Lee, H.-Y. Huang, Y.-H. Liao, and C.-K. Sun, “Signal degradation study in fixed human skin using confocal microscopy and higher-harmonic optical microscopy,” submitted to Biophys. J..

S.-Y. Chen, S.-P. Tai, T.-H. Tsai, and C.-K. Sun, ”Direct backward-emitted third-harmonic generation and its application to clinical microscopy”, in Technical Digest of Conference on Laser and Electro-optics/Quantum Electronics and Laser Science Conference (CLEO/QELS 2005), Baltimore, MD, USA, paper QMI3 (2005).

Supplementary Material (2)

» Media 1: MOV (1653 KB)     
» Media 2: MOV (13821 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Harmonics optical biopsy system setup.

Fig. 2.
Fig. 2.

Vertically sectioned (a) B-SHG, (b) B-THG, and (c) combined HOB images of fixed human skin. B-SHG and B-THG signals are denoted by green and blue colors respectively. From epidermis to dermis of the studied fixed human skin, we can specify coverglass-formalin interface (d), stratum corneum (e), stratum granulosum & spinosum (f) and the basal layer (g) from the B-THG image. In the B-SHG image, the dermal papilla (h) and dermal capillaries (i) are clearly resolved. Image size: 240μm×360μm

Fig. 3.
Fig. 3.

Horizontally sectioned HOB images of fixed human skin at depths of (a) 29μm, (b) 54μm, (c) 90μm, and (d) 156μm from the specimen surface. B-SHG and B-THG signals are denoted by green and blue colors respectively. Using B-HOB, we can identify the morphology of (a) stratum corneum, (b) stratum spinosum, and (c) the basal layer in epidermis where distinctive morphological and optical properties displayed during keratinocyte maturation process could be appreciated. Besides, the capillary networks (e) and the Meissner’s corpuscle (f) located within the dermal papilla could be clearly observed by HOB. These observations indicate that B-HOB could be an ideal platform of noninvasive skin diagnostic tool without staining. Image size: 120μm× 120μm.

Fig. 4.
Fig. 4.

(1.62 MB) Movie of stack of horizontal sections in the fixed human skin (13.5 MB version). Using B-HOB, a series of horizontal sections from epidermis to dermis are demonstrated. The movie is composed of 100 horizontal images. The optical depth difference between adjacent images is 1.5 μm. Image size: 120μm×120μm

Fig. 5.
Fig. 5.

Horizontally sectioned (a-d) B-THG and (e-f) F-THG images taken at different depths inside the epidermis of the fixed human skin specimen. (i-l) are the combined images for comparison. B-THG and F-THG signals are denoted by blue and red colors respectively. Image size: 80μm×80μm

Fig. 6.
Fig. 6.

Horizontally sectioned (a-d) B-SHG and (e-f) F-SHG images taken at different depths inside the dermis of the fixed human skin specimen. (i-l) are the combined images for comparison. B-SHG and F-SHG signals are denoted by green and red colors respectively. Image size: 80μm×80μm

Metrics