Abstract

We demonstrated superluminal light propagation with a negative group velocity of –5.7 m/s in a photorefractive Bi12SiO20 crystal by using the dispersive phase coupling effect in a nondegenerate two-wave mixing process. To the best of our knowledge, this is the first experimental demonstration of superluminal light propagation at room temperature in solids by using a classical wave mixing technique. In addition, we showed the tunability of the group velocity of light between the negative (superluminal light) and the positive (subluminal light) by simply tuning the experimental conditions such as the frequency of the coupling beam, the incident intensity, and the externally applied electric fields.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Brillouin, Wave Propagation and Group Velocity (Academic, New York, 1960).
  2. E. L. Bolda, R. Y. Chiao, and J. C. Garrison, �??Two theorems for the group velocity in dispersive media,�?? Phys. Rev. A 48, 3890-3894 (1993).
    [CrossRef] [PubMed]
  3. P.W. Milonni, Fast Light, Slow Light and Left-handed Light (Institute of Physics Publishing, Bristol and Philadelphia, 2005).
  4. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, �??Light speed reduction to 17 meters per second in an ultracold atomic gas,�?? Nature 397, 594-598 (1999).
    [CrossRef]
  5. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, �??Ultraslow group velocity and enhanced nonlinear optical effects in a coherently diriven hot atomic gas,�?? Phys. Rev. Lett. 82, 5229-5232 (1999).
    [CrossRef]
  6. Ch. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, �??Observation of coherent optical information storage in an atomic medium using halted light pulses,�?? Nature 409, 490-493 (2001).
    [CrossRef] [PubMed]
  7. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, �??Observation of ultraslow and stored light pulses in a solid,�?? Phys. Rev. Lett. 88, 023602 (2002).
    [CrossRef] [PubMed]
  8. D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, and M. D. Lukin, �??Storage of light in atomic vapor,�?? Phys. Rev. Lett. 86, 783-786 (2001).
    [CrossRef] [PubMed]
  9. L. Deng, E. W. Hagley, M. Kozuma, D. Akamatsu, and M. G. Payne, �??Achieving very-low-loss group velocity reduction without electromagnetically induced transparency,�?? Appl. Phys. Lett. 81, 1168-1170 (2002).
    [CrossRef]
  10. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, �??Observation of ultraslow light propagation in a ruby crystal at room temperature,�?? Phys. Rev. Lett. 90, 113903 (2003).
    [CrossRef] [PubMed]
  11. C. G. B. Garrett and D. E. McCumber, �??Propagation of a Gaussian light pulse through an anomalous dispersion medium,�?? Phys. Rev. A 1, 305-313 (1970).
    [CrossRef]
  12. S. Chu and S. Wong, �??Linear pulse propagation in an absorbing medium,�?? Phys. Rev. Lett. 48, 738-741 (1982).
    [CrossRef]
  13. L. J. Wang, A. Kuzmich, and A. Dogariu, �??Gain-assisted superluminal light propagation,�?? Nature 406, 277-279 (2000).
    [CrossRef] [PubMed]
  14. S. E. Harris, �??Electromagnetically induced transparency,�?? Phys. Today 50, 36-42 (1997).
    [CrossRef]
  15. A. M. Akulshin, S. Barreiro and A. Lezama, �??Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,�?? Phys. Rev. A 57, 2996-3002 (1998).
    [CrossRef]
  16. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, �??Superluminal and slow light propagation in a room-temperature solid,�?? Science 301, 200-202 (2003).
    [CrossRef] [PubMed]
  17. M. A. I. Talukder, Y. Amagishi, and M. Tomita, �??Superluminal to subluminal transition in the pulse propagation in a resonantly absorbing medium,�?? Phys. Rev. Lett. 86, 3546-3549 (2001).
    [CrossRef] [PubMed]
  18. Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, and T. Kuga, �??Control of light pulse propagation with only a few cold atoms in a high-finesse microcavity,�?? Phys. Rev. Lett. 89, 233001 (2002).
    [CrossRef] [PubMed]
  19. G. S. Agarwal, T. N. Dey, and S. Menon, �??Knob for changing light propagation from subluminal to superluminal,�?? Phys. Rev. A 64, 053809 (2001).
    [CrossRef]
  20. K. Kim, H. S. Moon, Ch. Lee, S. K. Kim, and J. B. Kim, �??Observation of arbitary group velocities of light from superluminal to subluminal on a single atomic transition line,�?? Phys. Rev. A 68, 013810 (2003).
    [CrossRef]
  21. E. E. Mikhailov, V. A. Sautenkov, I. Novikova, and G. R. Welch, �??Large negative and positive delay of optical pulses in coherently prepared dense Rb vapor with buffer gas,�?? Phys. Rev. A 69, 063808 (2004).
    [CrossRef]
  22. H. Kang, G. Hernandez, and Y. Zhu, �??Superluminal and slow light propagation in cold atoms,�?? Phys. Rev. A 70, 011801 (2004).
    [CrossRef]
  23. G. Zhang, R. Dong, and J. Xu, �??Group velocity reduction of light pulses in photorefractive two-wave mixing,�?? Chin. Phys. Lett., 1725-1728 (2003).
    [CrossRef]
  24. G. Zhang, R. Dong, F. Bo, and J. Xu, �??Slowdown of group velocity of light by means of phase coupling in photorefractive two-wave mixing,�?? Appl. Opt. 43, 1167-1173 (2004).
    [CrossRef] [PubMed]
  25. G. Zhang, F. Bo, R. Dong, and J. Xu, �??Phase-coupling-induced ultraslow light propagation in solids at room temperature,�?? Phys. Rev. Lett. 93, 133903 (2004).
    [CrossRef] [PubMed]
  26. E. Podivilov, B. Sturman, A. Shumelyuk and S. Odoulov, �??Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,�?? Phys. Rev. Lett. 91, 083902 (2003).
    [CrossRef] [PubMed]
  27. A. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov and K. Buse, �??Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,�?? Phys. Rev. Lett. 93, 243604 (2004).
    [CrossRef]
  28. Z. Deng and P. R. Hemmer, �??Investigation of room-temperature slow light in photorefractives for optical buffer applications,�?? in Advanced Optical and Quantum Memories and Computing, Hans J. Coufal and Zameer U. Hasan, eds., Proc. SPIE 5362, 81-89 (2004).
    [CrossRef]
  29. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

L. Deng, E. W. Hagley, M. Kozuma, D. Akamatsu, and M. G. Payne, �??Achieving very-low-loss group velocity reduction without electromagnetically induced transparency,�?? Appl. Phys. Lett. 81, 1168-1170 (2002).
[CrossRef]

Chin. Phys. Lett. (1)

G. Zhang, R. Dong, and J. Xu, �??Group velocity reduction of light pulses in photorefractive two-wave mixing,�?? Chin. Phys. Lett., 1725-1728 (2003).
[CrossRef]

Nature (3)

Ch. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, �??Observation of coherent optical information storage in an atomic medium using halted light pulses,�?? Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, �??Light speed reduction to 17 meters per second in an ultracold atomic gas,�?? Nature 397, 594-598 (1999).
[CrossRef]

L. J. Wang, A. Kuzmich, and A. Dogariu, �??Gain-assisted superluminal light propagation,�?? Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

Phys. Rev. A (7)

C. G. B. Garrett and D. E. McCumber, �??Propagation of a Gaussian light pulse through an anomalous dispersion medium,�?? Phys. Rev. A 1, 305-313 (1970).
[CrossRef]

A. M. Akulshin, S. Barreiro and A. Lezama, �??Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,�?? Phys. Rev. A 57, 2996-3002 (1998).
[CrossRef]

E. L. Bolda, R. Y. Chiao, and J. C. Garrison, �??Two theorems for the group velocity in dispersive media,�?? Phys. Rev. A 48, 3890-3894 (1993).
[CrossRef] [PubMed]

G. S. Agarwal, T. N. Dey, and S. Menon, �??Knob for changing light propagation from subluminal to superluminal,�?? Phys. Rev. A 64, 053809 (2001).
[CrossRef]

K. Kim, H. S. Moon, Ch. Lee, S. K. Kim, and J. B. Kim, �??Observation of arbitary group velocities of light from superluminal to subluminal on a single atomic transition line,�?? Phys. Rev. A 68, 013810 (2003).
[CrossRef]

E. E. Mikhailov, V. A. Sautenkov, I. Novikova, and G. R. Welch, �??Large negative and positive delay of optical pulses in coherently prepared dense Rb vapor with buffer gas,�?? Phys. Rev. A 69, 063808 (2004).
[CrossRef]

H. Kang, G. Hernandez, and Y. Zhu, �??Superluminal and slow light propagation in cold atoms,�?? Phys. Rev. A 70, 011801 (2004).
[CrossRef]

Phys. Rev. Lett. (10)

G. Zhang, F. Bo, R. Dong, and J. Xu, �??Phase-coupling-induced ultraslow light propagation in solids at room temperature,�?? Phys. Rev. Lett. 93, 133903 (2004).
[CrossRef] [PubMed]

E. Podivilov, B. Sturman, A. Shumelyuk and S. Odoulov, �??Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,�?? Phys. Rev. Lett. 91, 083902 (2003).
[CrossRef] [PubMed]

A. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov and K. Buse, �??Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,�?? Phys. Rev. Lett. 93, 243604 (2004).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, �??Ultraslow group velocity and enhanced nonlinear optical effects in a coherently diriven hot atomic gas,�?? Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, �??Observation of ultraslow and stored light pulses in a solid,�?? Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, and M. D. Lukin, �??Storage of light in atomic vapor,�?? Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, �??Observation of ultraslow light propagation in a ruby crystal at room temperature,�?? Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

M. A. I. Talukder, Y. Amagishi, and M. Tomita, �??Superluminal to subluminal transition in the pulse propagation in a resonantly absorbing medium,�?? Phys. Rev. Lett. 86, 3546-3549 (2001).
[CrossRef] [PubMed]

Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, and T. Kuga, �??Control of light pulse propagation with only a few cold atoms in a high-finesse microcavity,�?? Phys. Rev. Lett. 89, 233001 (2002).
[CrossRef] [PubMed]

S. Chu and S. Wong, �??Linear pulse propagation in an absorbing medium,�?? Phys. Rev. Lett. 48, 738-741 (1982).
[CrossRef]

Phys. Today (1)

S. E. Harris, �??Electromagnetically induced transparency,�?? Phys. Today 50, 36-42 (1997).
[CrossRef]

Proc. SPIE (1)

Z. Deng and P. R. Hemmer, �??Investigation of room-temperature slow light in photorefractives for optical buffer applications,�?? in Advanced Optical and Quantum Memories and Computing, Hans J. Coufal and Zameer U. Hasan, eds., Proc. SPIE 5362, 81-89 (2004).
[CrossRef]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, �??Superluminal and slow light propagation in a room-temperature solid,�?? Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Other (3)

P.W. Milonni, Fast Light, Slow Light and Left-handed Light (Institute of Physics Publishing, Bristol and Philadelphia, 2005).

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).

L. Brillouin, Wave Propagation and Group Velocity (Academic, New York, 1960).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The experimental setup scheme. S, M, B were beam splitter, mirror and blocker, respectively. D1 and D2 were photodetectors. Both the sinusoidally modulated signal pulses and the continuous-wave coupling beam propagated approximately along the 110 direction (along the 5.7-mm side) of the BSO crystal. A DC voltage was applied along the 001 direction of the crystal.

Fig. 2.
Fig. 2.

Typical normalized temporal traces for the reference (the dashed curves) and the transmitted signal beams (the solid curves) demonstrating the subluminal (a) and the superluminal (b) propagation.

Fig. 3.
Fig. 3.

Measured vg as a function of Ω/2π. The solid and the empty circles were the results at Ip = 83.0 mW/cm2 and Ip = 19.5 mW/cm2, respectively. The values of E, Ispeak, Λ and T for both cases were 8 kV/cm, 0.1 mW/cm2,21.3 μm, and 30 ms, respectively.

Fig. 4.
Fig. 4.

Measured Ip-dependences of vg at Ω/2π = 14 Hz (empty squares) and 62 Hz (solid squares), respectively. The other parameters E, Ispeak, Λ and T for both cases were 8 kV/cm, 0.1 mW/cm2, 21.3 μm and 30 ms, respectively.

Fig. 5.
Fig. 5.

Measured dependences of vg on E at Ω/2π = 2 Hz (empty squares) and 40 Hz (solid squares), respectively. The other parameters Ip, Ispeak, Λ and T for both cases were 19.5 mW/cm2, 0.1 mW/cm2,21.3 μm and 30 ms, respectively.

Metrics