Abstract

The principles and the practical conditions for registration of phase singularities, such as optical vortices in the spectral components of white light, are discussed. Interference diagnostics of white light vortices in a polychromatic speckle-field is reported for the first time.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M.V. Berry, �??Coloured phase singularities,�?? New J. Phys. 4, 1-16 (2002).
    [CrossRef]
  2. M.V. Berry, �??Exploring the colours of dark light,�?? New J. Phys. 4, 1-14 (2002).
    [CrossRef]
  3. J. Leach J and M. J. Padgett, �??Observation of chromatic effects near a white light vortex,�?? New J. Phys. 5, 1-7 (2003).
  4. G. Popescu and A. Dogariu, �??Spectral anomalies in wave-front dislocations,�?? Phys. Rev. Lett. 88, 183902 (2002).
    [CrossRef] [PubMed]
  5. A. V. Volyar and T. A Fadeeva, �??Generation of singular beams in uniaxial crystals,�?? Opt. Spectrosc. 94, 235-244 (2002).
    [CrossRef]
  6. M.S. Soskin, P.V. Polyanskii and O.O. Arkhelyuk, �??Computer-synthesized hologram-based rainbow optical vortices,�?? New J. Phys. 6, 1-8 (2004).
    [CrossRef]
  7. G. Gbur, T. D. Visser and E. Wolf, �??Anomalous behaviour of spectra near phase singularities of focused waves,�?? Phys. Rev. Lett. 88, 013901 (2002).
    [CrossRef] [PubMed]
  8. V. K. Polyanskii, O. V. Angelsky and P. V. Polyanskii, �??Scattering-induced spectral changes as a singular optical effect,�?? Optica Applicata. 32, 843-848 (2002).
  9. O.V. Angelsky, S. G. Hanson, A. P. Maksimyak and P. P. Maksimyak, �??On the feasibility for determining the amplitude zeroes in polychromatic fields�?? Opt. Express 13, 4396-4405 (2005).
    [CrossRef] [PubMed]
  10. G. V. Bogatyryova, C. V. Felde, S. A. Ponomarenko, P.V. Polyanskii, M. S. Soskin and E. Wolf, �??Partially coherent vortex beams with a separable phase,�?? Opt. Lett. 28, 878-880 (2003).
    [CrossRef] [PubMed]
  11. N. B. Baranova, B. Y. Zel�??dovich, A. V. Mamayev, N. F. Pilipetsky and V. V. Shkunov, �??Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),�?? JETP. 33, 1789-1797 (1981).
  12. J. Nye, �??Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations,�?? Inst. Phys. Publ., Bristol, (1999).
  13. J. Nye, �??Evolution from Fraunhofer to a Pearcey diffraction pattern,�?? J. Opt. A: Pure and Appl. Opt. 5, 495-502 (2003).
    [CrossRef]

Inst. Phys. Publ.

J. Nye, �??Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations,�?? Inst. Phys. Publ., Bristol, (1999).

J. Opt. A: Pure and Appl. Opt.

J. Nye, �??Evolution from Fraunhofer to a Pearcey diffraction pattern,�?? J. Opt. A: Pure and Appl. Opt. 5, 495-502 (2003).
[CrossRef]

JETP

N. B. Baranova, B. Y. Zel�??dovich, A. V. Mamayev, N. F. Pilipetsky and V. V. Shkunov, �??Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),�?? JETP. 33, 1789-1797 (1981).

New J. Phys.

M.V. Berry, �??Coloured phase singularities,�?? New J. Phys. 4, 1-16 (2002).
[CrossRef]

M.V. Berry, �??Exploring the colours of dark light,�?? New J. Phys. 4, 1-14 (2002).
[CrossRef]

J. Leach J and M. J. Padgett, �??Observation of chromatic effects near a white light vortex,�?? New J. Phys. 5, 1-7 (2003).

M.S. Soskin, P.V. Polyanskii and O.O. Arkhelyuk, �??Computer-synthesized hologram-based rainbow optical vortices,�?? New J. Phys. 6, 1-8 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Spectrosc.

A. V. Volyar and T. A Fadeeva, �??Generation of singular beams in uniaxial crystals,�?? Opt. Spectrosc. 94, 235-244 (2002).
[CrossRef]

Optica Applicata.

V. K. Polyanskii, O. V. Angelsky and P. V. Polyanskii, �??Scattering-induced spectral changes as a singular optical effect,�?? Optica Applicata. 32, 843-848 (2002).

Phys. Rev. Lett.

G. Gbur, T. D. Visser and E. Wolf, �??Anomalous behaviour of spectra near phase singularities of focused waves,�?? Phys. Rev. Lett. 88, 013901 (2002).
[CrossRef] [PubMed]

G. Popescu and A. Dogariu, �??Spectral anomalies in wave-front dislocations,�?? Phys. Rev. Lett. 88, 183902 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental arrangement: S – white light source; C – condenser; D – diaphragm; O1, O2, O3 and O4 – objectives; P1 and P2 – polarizer and analyzer; BS1 and BS2 – beam-splitting cubes; M1 and M2 – mirrors; BC – singularity-generating object; CP – compensating plate; RF – Fresnel rhombus; W1 and W2 – moving and stationary optical wedges; CCD – camera.

Fig. 2.
Fig. 2.

Singularity obtained in a white light beam passing a double-axial crystal placed between matched polarizer and analyzer: (a) without reference wave; (b) with a reference wave.

Fig. 3.
Fig. 3.

Left column illustrates the intensity distributions for a field scattered by a deep phase screen at different distances (from z = -500 μm to z = 500 μm). Right column shows interference patterns for various cross-sections of the object field with the reference beam.

Metrics