Abstract

The principles and the practical conditions for registration of phase singularities, such as optical vortices in the spectral components of white light, are discussed. Interference diagnostics of white light vortices in a polychromatic speckle-field is reported for the first time.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.V. Berry, “Coloured phase singularities,” New J. Phys. 4, 1–16 (2002).
    [CrossRef]
  2. M.V. Berry, “Exploring the colours of dark light,” New J. Phys. 4, 1–14 (2002).
    [CrossRef]
  3. J. Leach J and M. J. Padgett, “Observation of chromatic effects near a white light vortex,” New J. Phys. 5, 1–7 (2003).
  4. G. Popescu and A. Dogariu, “Spectral anomalies in wave-front dislocations,” Phys. Rev. Lett. 88, 183902 (2002).
    [CrossRef] [PubMed]
  5. A. V. Volyar and T. A Fadeeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2002).
    [CrossRef]
  6. M.S. Soskin, P.V. Polyanskii, and O.O. Arkhelyuk, “Computer-synthesized hologram-based rainbow optical vortices,” New J. Phys. 6, 1–8 (2004).
    [CrossRef]
  7. G. Gbur, T. D. Visser, and E. Wolf, “Anomalous behaviour of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901 (2002).
    [CrossRef] [PubMed]
  8. V. K. Polyanskii, O. V. Angelsky, and P. V. Polyanskii, “Scattering-induced spectral changes as a singular optical effect,” Optica Applicata. 32, 843–848 (2002).
  9. O.V. Angelsky, S. G. Hanson, A. P. Maksimyak, and P. P. Maksimyak, “On the feasibility for determining the amplitude zeroes in polychromatic fields” Opt. Express 13, 4396–4405 (2005).
    [CrossRef] [PubMed]
  10. G. V. Bogatyryova, C. V. Felde, S. A. Ponomarenko, P.V. Polyanskii, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–880 (2003).
    [CrossRef] [PubMed]
  11. N. B. Baranova, B. Y. Zel’dovich, A. V. Mamayev, N. F. Pilipetsky, and V. V. Shkunov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP. 33, 1789–1797 (1981).
  12. J. Nye, “Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations,” Inst. Phys. Publ., Bristol, (1999).
  13. J. Nye, “Evolution from Fraunhofer to a Pearcey diffraction pattern,” J. Opt. A: Pure and Appl. Opt. 5, 495–502 (2003).
    [CrossRef]

2005 (1)

2004 (1)

M.S. Soskin, P.V. Polyanskii, and O.O. Arkhelyuk, “Computer-synthesized hologram-based rainbow optical vortices,” New J. Phys. 6, 1–8 (2004).
[CrossRef]

2003 (3)

J. Leach J and M. J. Padgett, “Observation of chromatic effects near a white light vortex,” New J. Phys. 5, 1–7 (2003).

J. Nye, “Evolution from Fraunhofer to a Pearcey diffraction pattern,” J. Opt. A: Pure and Appl. Opt. 5, 495–502 (2003).
[CrossRef]

G. V. Bogatyryova, C. V. Felde, S. A. Ponomarenko, P.V. Polyanskii, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–880 (2003).
[CrossRef] [PubMed]

2002 (6)

G. Popescu and A. Dogariu, “Spectral anomalies in wave-front dislocations,” Phys. Rev. Lett. 88, 183902 (2002).
[CrossRef] [PubMed]

A. V. Volyar and T. A Fadeeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2002).
[CrossRef]

M.V. Berry, “Coloured phase singularities,” New J. Phys. 4, 1–16 (2002).
[CrossRef]

M.V. Berry, “Exploring the colours of dark light,” New J. Phys. 4, 1–14 (2002).
[CrossRef]

G. Gbur, T. D. Visser, and E. Wolf, “Anomalous behaviour of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901 (2002).
[CrossRef] [PubMed]

V. K. Polyanskii, O. V. Angelsky, and P. V. Polyanskii, “Scattering-induced spectral changes as a singular optical effect,” Optica Applicata. 32, 843–848 (2002).

1981 (1)

N. B. Baranova, B. Y. Zel’dovich, A. V. Mamayev, N. F. Pilipetsky, and V. V. Shkunov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP. 33, 1789–1797 (1981).

Angelsky, O. V.

V. K. Polyanskii, O. V. Angelsky, and P. V. Polyanskii, “Scattering-induced spectral changes as a singular optical effect,” Optica Applicata. 32, 843–848 (2002).

Angelsky, O.V.

Arkhelyuk, O.O.

M.S. Soskin, P.V. Polyanskii, and O.O. Arkhelyuk, “Computer-synthesized hologram-based rainbow optical vortices,” New J. Phys. 6, 1–8 (2004).
[CrossRef]

Baranova, N. B.

N. B. Baranova, B. Y. Zel’dovich, A. V. Mamayev, N. F. Pilipetsky, and V. V. Shkunov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP. 33, 1789–1797 (1981).

Berry, M.V.

M.V. Berry, “Coloured phase singularities,” New J. Phys. 4, 1–16 (2002).
[CrossRef]

M.V. Berry, “Exploring the colours of dark light,” New J. Phys. 4, 1–14 (2002).
[CrossRef]

Bogatyryova, G. V.

Dogariu, A.

G. Popescu and A. Dogariu, “Spectral anomalies in wave-front dislocations,” Phys. Rev. Lett. 88, 183902 (2002).
[CrossRef] [PubMed]

Fadeeva, T. A

A. V. Volyar and T. A Fadeeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2002).
[CrossRef]

Felde, C. V.

Gbur, G.

G. Gbur, T. D. Visser, and E. Wolf, “Anomalous behaviour of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901 (2002).
[CrossRef] [PubMed]

Hanson, S. G.

Leach J, J.

J. Leach J and M. J. Padgett, “Observation of chromatic effects near a white light vortex,” New J. Phys. 5, 1–7 (2003).

Maksimyak, A. P.

Maksimyak, P. P.

Mamayev, A. V.

N. B. Baranova, B. Y. Zel’dovich, A. V. Mamayev, N. F. Pilipetsky, and V. V. Shkunov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP. 33, 1789–1797 (1981).

Nye, J.

J. Nye, “Evolution from Fraunhofer to a Pearcey diffraction pattern,” J. Opt. A: Pure and Appl. Opt. 5, 495–502 (2003).
[CrossRef]

J. Nye, “Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations,” Inst. Phys. Publ., Bristol, (1999).

Padgett, M. J.

J. Leach J and M. J. Padgett, “Observation of chromatic effects near a white light vortex,” New J. Phys. 5, 1–7 (2003).

Pilipetsky, N. F.

N. B. Baranova, B. Y. Zel’dovich, A. V. Mamayev, N. F. Pilipetsky, and V. V. Shkunov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP. 33, 1789–1797 (1981).

Polyanskii, P. V.

V. K. Polyanskii, O. V. Angelsky, and P. V. Polyanskii, “Scattering-induced spectral changes as a singular optical effect,” Optica Applicata. 32, 843–848 (2002).

Polyanskii, P.V.

M.S. Soskin, P.V. Polyanskii, and O.O. Arkhelyuk, “Computer-synthesized hologram-based rainbow optical vortices,” New J. Phys. 6, 1–8 (2004).
[CrossRef]

G. V. Bogatyryova, C. V. Felde, S. A. Ponomarenko, P.V. Polyanskii, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–880 (2003).
[CrossRef] [PubMed]

Polyanskii, V. K.

V. K. Polyanskii, O. V. Angelsky, and P. V. Polyanskii, “Scattering-induced spectral changes as a singular optical effect,” Optica Applicata. 32, 843–848 (2002).

Ponomarenko, S. A.

Popescu, G.

G. Popescu and A. Dogariu, “Spectral anomalies in wave-front dislocations,” Phys. Rev. Lett. 88, 183902 (2002).
[CrossRef] [PubMed]

Shkunov, V. V.

N. B. Baranova, B. Y. Zel’dovich, A. V. Mamayev, N. F. Pilipetsky, and V. V. Shkunov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP. 33, 1789–1797 (1981).

Soskin, M. S.

Soskin, M.S.

M.S. Soskin, P.V. Polyanskii, and O.O. Arkhelyuk, “Computer-synthesized hologram-based rainbow optical vortices,” New J. Phys. 6, 1–8 (2004).
[CrossRef]

Visser, T. D.

G. Gbur, T. D. Visser, and E. Wolf, “Anomalous behaviour of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901 (2002).
[CrossRef] [PubMed]

Volyar, A. V.

A. V. Volyar and T. A Fadeeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2002).
[CrossRef]

Wolf, E.

G. V. Bogatyryova, C. V. Felde, S. A. Ponomarenko, P.V. Polyanskii, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878–880 (2003).
[CrossRef] [PubMed]

G. Gbur, T. D. Visser, and E. Wolf, “Anomalous behaviour of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901 (2002).
[CrossRef] [PubMed]

Zel’dovich, B. Y.

N. B. Baranova, B. Y. Zel’dovich, A. V. Mamayev, N. F. Pilipetsky, and V. V. Shkunov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP. 33, 1789–1797 (1981).

J. Opt. A: Pure and Appl. Opt. (1)

J. Nye, “Evolution from Fraunhofer to a Pearcey diffraction pattern,” J. Opt. A: Pure and Appl. Opt. 5, 495–502 (2003).
[CrossRef]

JETP. (1)

N. B. Baranova, B. Y. Zel’dovich, A. V. Mamayev, N. F. Pilipetsky, and V. V. Shkunov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP. 33, 1789–1797 (1981).

New J. Phys. (4)

M.V. Berry, “Coloured phase singularities,” New J. Phys. 4, 1–16 (2002).
[CrossRef]

M.V. Berry, “Exploring the colours of dark light,” New J. Phys. 4, 1–14 (2002).
[CrossRef]

J. Leach J and M. J. Padgett, “Observation of chromatic effects near a white light vortex,” New J. Phys. 5, 1–7 (2003).

M.S. Soskin, P.V. Polyanskii, and O.O. Arkhelyuk, “Computer-synthesized hologram-based rainbow optical vortices,” New J. Phys. 6, 1–8 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Spectrosc. (1)

A. V. Volyar and T. A Fadeeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2002).
[CrossRef]

Optica Applicata. (1)

V. K. Polyanskii, O. V. Angelsky, and P. V. Polyanskii, “Scattering-induced spectral changes as a singular optical effect,” Optica Applicata. 32, 843–848 (2002).

Phys. Rev. Lett. (2)

G. Gbur, T. D. Visser, and E. Wolf, “Anomalous behaviour of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901 (2002).
[CrossRef] [PubMed]

G. Popescu and A. Dogariu, “Spectral anomalies in wave-front dislocations,” Phys. Rev. Lett. 88, 183902 (2002).
[CrossRef] [PubMed]

Other (1)

J. Nye, “Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations,” Inst. Phys. Publ., Bristol, (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental arrangement: S – white light source; C – condenser; D – diaphragm; O1, O2, O3 and O4 – objectives; P1 and P2 – polarizer and analyzer; BS1 and BS2 – beam-splitting cubes; M1 and M2 – mirrors; BC – singularity-generating object; CP – compensating plate; RF – Fresnel rhombus; W1 and W2 – moving and stationary optical wedges; CCD – camera.

Fig. 2.
Fig. 2.

Singularity obtained in a white light beam passing a double-axial crystal placed between matched polarizer and analyzer: (a) without reference wave; (b) with a reference wave.

Fig. 3.
Fig. 3.

Left column illustrates the intensity distributions for a field scattered by a deep phase screen at different distances (from z = -500 μm to z = 500 μm). Right column shows interference patterns for various cross-sections of the object field with the reference beam.

Metrics