Abstract

We experimentally compared three methods of continuum generation that can provide wavelength conversion through anti-Stokes radiation (ASR). The three methods are: dispersion micro-managed (DMM) holey fiber, tapered fiber and long holey fiber with constant core diameter. We investigated the spectral shape and the amplitude fluctuations due to the broadband noise that is amplified during the nonlinear conversion process. The results show that the DMM method can shift wavelengths with up to 20 dB lower broadband noise compared with the other methods, at the same time with controllable wavelength shift and bandwidth, and without spectral substructure.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. K. Ranka, R. S. Windeler and A. J. Stentz, �??Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm,�?? Opt. Lett. 25, 25-27 (2000)
    [CrossRef]
  2. T. A. Birks, W. J. Wadsworth, P. St. J. Russell, �??Supercontinuum generation in tapered fibers,�?? Opt. Lett. 25, 1415-1417 (2000)
    [CrossRef]
  3. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka and R. S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber,�?? Opt. Lett, 26, 608-610 (2001)
    [CrossRef]
  4. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall and S. T. Cundiff, �??Carrier- Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,�?? Science, 288, 635-639 (2000)
    [CrossRef] [PubMed]
  5. G. McConnell, �??Confocal laser scanning fluorescence microscopy with a visible continuum source,�?? Opt. Express, 12, 2844-2850 (2004).
    [CrossRef] [PubMed]
  6. H. N. Paulsen, K. M. Hilligse, J. Thgersen, S. R. Keiding, J. J. Larsen, �??Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,�?? Opt. Lett. 28, 1123-1125 (2003)
    [CrossRef] [PubMed]
  7. J. A. Palero, V. O. Boer, J. C. Vijverberg and H. C. Gerritsen, �??Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source,�?? Opt. Express, 13, 5363- 5368 (2005)
    [CrossRef] [PubMed]
  8. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, �??Fundamental noise limitations to supercontinuum generation in microstructure fiber,�?? Phys. Rev. Lett, 90, 113904-1(2003)
    [CrossRef] [PubMed]
  9. J. M. Dudley and S. Coen, �??Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,�?? Opt. Lett. 27, 1180-1182 (2002)
    [CrossRef]
  10. T. M. Fortier, J. Ye, S. T. Cundiff and R. S. Windeler, �??Nonlinear phase noise generated in air-silica microstructure fiber and its effects on carrier-envelope phase,�?? Opt. Lett. 27, 445-447 (2002)
    [CrossRef]
  11. N. R. Newbury, B. R. Washburn, K. L. Corwin and R. S. Windeler, �??Noise amplification during supercontinuum generation in microstructure fiber,�?? Opt. Lett. 28, 944-946 (2003)
    [CrossRef] [PubMed]
  12. A. L. Gaeta, �??Nonlinear propagation and continuum generation in microstructured optical fibers,�?? Opt. Lett. 27, 924-926 (2002).
    [CrossRef]
  13. F. Lu, Y. Deng, W. H. Knox, �??Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,�?? Opt. Lett. 30, 1566-1568 (2005)
    [CrossRef] [PubMed]
  14. A. V. Husakou and J. Herrmann, �??Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,�?? Phys. Rev. Lett. 87, 203901 (2001)
    [CrossRef] [PubMed]
  15. G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux and P. St. J. Russell, �??Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers,�?? Opt. Lett. 26, 1137-1139 (2001)
    [CrossRef]
  16. E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, �??Tapered photonic crystal fibers,�?? Opt. Express, 12, 776-784 (2004).
    [CrossRef] [PubMed]
  17. I. Cristiani, R. Tediosi, L. Tartara and V. Degiorgio, �??Dispersive wave generation by solitons in microstructured optical fibers,�?? Opt. Express, 12, 124-135 (2004).
    [CrossRef] [PubMed]
  18. F. Lu and W. H. Knox, J. Opt. Soc. Am. B (to be submitted).

J. Opt. Soc. Am. B (1)

F. Lu and W. H. Knox, J. Opt. Soc. Am. B (to be submitted).

Opt. Express (4)

Opt. Lett, (1)

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka and R. S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber,�?? Opt. Lett, 26, 608-610 (2001)
[CrossRef]

Opt. Lett. (9)

F. Lu, Y. Deng, W. H. Knox, �??Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,�?? Opt. Lett. 30, 1566-1568 (2005)
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler and A. J. Stentz, �??Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm,�?? Opt. Lett. 25, 25-27 (2000)
[CrossRef]

T. A. Birks, W. J. Wadsworth, P. St. J. Russell, �??Supercontinuum generation in tapered fibers,�?? Opt. Lett. 25, 1415-1417 (2000)
[CrossRef]

G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux and P. St. J. Russell, �??Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers,�?? Opt. Lett. 26, 1137-1139 (2001)
[CrossRef]

T. M. Fortier, J. Ye, S. T. Cundiff and R. S. Windeler, �??Nonlinear phase noise generated in air-silica microstructure fiber and its effects on carrier-envelope phase,�?? Opt. Lett. 27, 445-447 (2002)
[CrossRef]

A. L. Gaeta, �??Nonlinear propagation and continuum generation in microstructured optical fibers,�?? Opt. Lett. 27, 924-926 (2002).
[CrossRef]

J. M. Dudley and S. Coen, �??Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,�?? Opt. Lett. 27, 1180-1182 (2002)
[CrossRef]

N. R. Newbury, B. R. Washburn, K. L. Corwin and R. S. Windeler, �??Noise amplification during supercontinuum generation in microstructure fiber,�?? Opt. Lett. 28, 944-946 (2003)
[CrossRef] [PubMed]

H. N. Paulsen, K. M. Hilligse, J. Thgersen, S. R. Keiding, J. J. Larsen, �??Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,�?? Opt. Lett. 28, 1123-1125 (2003)
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, �??Fundamental noise limitations to supercontinuum generation in microstructure fiber,�?? Phys. Rev. Lett, 90, 113904-1(2003)
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, �??Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,�?? Phys. Rev. Lett. 87, 203901 (2001)
[CrossRef] [PubMed]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall and S. T. Cundiff, �??Carrier- Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,�?? Science, 288, 635-639 (2000)
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Theoretical calculations for varying phase matching conditions (equation 1) Vs. HF core diameters. Curves from left to right correspond to HF groups with core diameters from 2.4 μm – 3.3 μm (increasing step is 0.1 μm per curve), separately.

Fig. 2.
Fig. 2.

Left column: Continuum spectra generated by three methods (a) HF with 2.6 μm constant core diameter (b) Tapered fiber with 2.7 μm core diameter (c) DMM HF tapered from 3.3 μm to 2.6 μm. The dashed line in (c) represents the input laser spectrum centered at 920 nm. The shadowed regions represent the filtered spectral components centered at 580 nm with ~25 nm width band-pass filter. Right column: schematic plots of the three methods for continuum generation.

Fig. 3.
Fig. 3.

Sliced spectra from the continua generated through three methods: the HF, the tapered fiber and the DMM HF, with centered wavelength ~ 580 nm and ~ 25 nm bandwidth.

Fig. 4.
Fig. 4.

Broadband noise comparison of sliced 580 nm continuum generated through: the HF (pink line), the tapered fiber (green line) and the DMM HF (blue line). The black line is the noise background. The 580 nm component generated through the DMM HF demonstrated lower broadband noise compared with the other two methods.

Fig. 5.
Fig. 5.

Broadband noise comparison of sliced 535 nm and 620 nm ASRs generated through: the HF, the tapered fiber and the DMM HFs. a) and b): The spectra and broadband noise comparisons for 535 nm ASR. c) and d): The spectra and broadband noise comparisons for 620 nm ASR.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ β = β ( ω ) β ( ω s ) ω ω s v g γ P s

Metrics