Abstract

We experimentally demonstrate slow-down of light by a factor of three in a 100 µm long semiconductor waveguide at room temperature and at a record-high frequency of 16.7 GHz. It is shown that the group velocity can be controlled all-optically as well as through an applied bias voltage. A semi-analytical model based on the effect of coherent population oscillations and taking into account propagation effects is derived and is shown to well account for the experimental results. It is shown that the carrier lifetime limits the maximum achievable delay. Based on the general model we analyze fundamental limitations in the application of light slowdown due to coherent population oscillations.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, �??Light speed reduction to 17 meters per second in an ultracold atomic gas,�?? Nature 397, 594�??598 (1999).
    [CrossRef]
  2. C. J. Chang-Hasnain, P. -C. Ku, J. Kim, S. -L. Chuang, �??Variable optical buffer using slow light in semiconductor nanostructures,�?? Proc. IEEE 91, 1884-1897 (2003).
  3. M. S. Bigelow, N. N. Lepeshkin, and R. Boyd, �??Observation of ultraslow light propagation in a ruby crystal at room temperature,�?? Phys. Rev. Lett. 90, 113903-1-4 (2003).
    [CrossRef]
  4. P. Palinginis, M. Moewe, E. Kim, F. G. Sedgwick, S. Crankshaw, C. J. Chang-Hasnain, H. Wang, and S. L. Chuang, �??Ultra-slow light (<200 m/s) in a semiconductor nanostructure,�?? Proc. CLEO, Post deadline paper CPDB6, Baltimore, USA, May 2005.
  5. J. Shim, B. Liu, and J. E. Bowers, �??Dependence of transmission curves on input optical power in an electroabsorption modulator,�?? IEEE J. Quantum Electron. 40, 1622-1628 (2004).
    [CrossRef]
  6. A. Uskov, J. Mørk and J. Mark, �??Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,�?? IEEE J. Quantum Electron. 30, 1769- 1781 (1994).
    [CrossRef]
  7. S. Højfeldt and J. Mørk, �??Modeling of carrier dynamics in quantum-well electroabsorption modulators,�?? IEEE J. Select. Topics Quantum Electron., 8, 1265-1276 (2002).
    [CrossRef]
  8. J. Mørk and A. Mecozzi, �??Theory of the ultrafast optical response of active semiconductor waveguides," J. Opt. Soc. Am. B 13, 1803-1816 (1996).
  9. G. P. Agrawal, and N. A. Olsson, �??Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,�?? IEEE J. Quantum Electron. 25, 2297-2306 (1989).
    [CrossRef]
  10. R. S. Tucker, P.C. Ku, and C. J. Chang-Hasnain, �??Delay bandwidth product and storage density in slow-light optical buffers,�?? Electron. Lett. 41, 61-62 (2005).
  11. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, �??Maximum time delay achievable on propagation through a slow-time medium,�?? Phys. Rev. A 71, 023801-1 �?? 023801-4 (2005).
    [CrossRef]
  12. D. Marcenac, and A. Mecozzi, �??Switches and frequency converters based on cross-gain modulation in semiconductor optical amplifiers,�?? IEEE Photon. Technol. Lett. 9, 749-751 (1997).
    [CrossRef]
  13. M. v.d. Poel, J. Mørk and J. M. Hvam, "Controllable delay of ultrashort optical pulses in a semiconductor quantum dot amplifier,�?? accepted for publication in Optics Express.

Electron. Lett. (1)

R. S. Tucker, P.C. Ku, and C. J. Chang-Hasnain, �??Delay bandwidth product and storage density in slow-light optical buffers,�?? Electron. Lett. 41, 61-62 (2005).

IEEE J. Quantum Electron. (2)

J. Shim, B. Liu, and J. E. Bowers, �??Dependence of transmission curves on input optical power in an electroabsorption modulator,�?? IEEE J. Quantum Electron. 40, 1622-1628 (2004).
[CrossRef]

A. Uskov, J. Mørk and J. Mark, �??Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,�?? IEEE J. Quantum Electron. 30, 1769- 1781 (1994).
[CrossRef]

IEEE J. Select. Topics Quantum Electron (1)

S. Højfeldt and J. Mørk, �??Modeling of carrier dynamics in quantum-well electroabsorption modulators,�?? IEEE J. Select. Topics Quantum Electron., 8, 1265-1276 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Marcenac, and A. Mecozzi, �??Switches and frequency converters based on cross-gain modulation in semiconductor optical amplifiers,�?? IEEE Photon. Technol. Lett. 9, 749-751 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quantum Electron. (1)

G. P. Agrawal, and N. A. Olsson, �??Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,�?? IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, �??Light speed reduction to 17 meters per second in an ultracold atomic gas,�?? Nature 397, 594�??598 (1999).
[CrossRef]

Optics Express (1)

M. v.d. Poel, J. Mørk and J. M. Hvam, "Controllable delay of ultrashort optical pulses in a semiconductor quantum dot amplifier,�?? accepted for publication in Optics Express.

Phys. Rev. A (1)

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, �??Maximum time delay achievable on propagation through a slow-time medium,�?? Phys. Rev. A 71, 023801-1 �?? 023801-4 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

M. S. Bigelow, N. N. Lepeshkin, and R. Boyd, �??Observation of ultraslow light propagation in a ruby crystal at room temperature,�?? Phys. Rev. Lett. 90, 113903-1-4 (2003).
[CrossRef]

Proc. CLEO (1)

P. Palinginis, M. Moewe, E. Kim, F. G. Sedgwick, S. Crankshaw, C. J. Chang-Hasnain, H. Wang, and S. L. Chuang, �??Ultra-slow light (<200 m/s) in a semiconductor nanostructure,�?? Proc. CLEO, Post deadline paper CPDB6, Baltimore, USA, May 2005.

Proc. IEEE (1)

C. J. Chang-Hasnain, P. -C. Ku, J. Kim, S. -L. Chuang, �??Variable optical buffer using slow light in semiconductor nanostructures,�?? Proc. IEEE 91, 1884-1897 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics