Abstract

An ultrafast all-optical switching using pulse trapping by orthogonally polarized soliton pulse in birefringent fiber is investigated both experimentally and numerically. The signal pulse, which is polarized along the fast axis, is trapped by the control soliton pulse along the slow axis; they subsequently copropagate along the fiber. Their wavelengths are red-shifted by the soliton self-frequency shift. The trapped pulse is shaped as a sech2 ultrashort pulse. It is also amplified by the Raman gain of the control pulse. Temporal response of the pulse trapping is estimated as 250 fs for 150 fs signal pulses. Ultrafast all-optical switching is demonstrated for the 0.84 THz pulse train.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, �??A terahertz optical asymmetric demultiplexer (TOAD),�?? IEEE Photon. Technol. Lett. 5, 787-790 (1993).
    [CrossRef]
  2. S. Nakamura, Y. Ueno, and K. Tajima, �??Ultrafast (200-fs switching, 1.5 Tb/s demultiplexing) and high-repetition (10 GHz) operations of a polarization-discriminating symmetric Mach-Zehnder all optical switch,�?? IEEE Photon. Technol. Lett. 10, 1575-1577 (1998).
    [CrossRef]
  3. B. E. Olsson and D. J. Blumenthal, �??All-optical demultiplexing using fiber cross-phase modulation (XPM) and optical filtering,�?? IEEE Photon. Technol. Lett. 13, 875-877 (2001).
    [CrossRef]
  4. J. C. Knight, T. A. Birks, P. St. J. Russell, and P. J. Roberts, �??Photonic crystal fibers, All-silica single-mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  5. T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, �??Silica-based functional fibers with enhanced nonlinearity and their applications,�?? IEEE J. Sel. Top. in Quantum Electron. 5, 1385-1391 (1999).
    [CrossRef]
  6. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  7. N. Nishizawa and T. Goto, �??Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,�?? Jpn. J. Appl. Phys. 40, L365-L367 (2000).
    [CrossRef]
  8. M. N. Islam, C. D. Poole, and J. P. Gordon, �??Soliton trapping in birefringent optical fibers,�?? Opt. Lett. 14, 1011-1013 (1989).
    [CrossRef] [PubMed]
  9. N. Nishizawa and T. Goto, �??Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,�?? Opt. Lett. 27, 152-154 (2002).
    [CrossRef]
  10. N. Nishizawa and T. Goto, �??Trapped pulse generation by femtosecond soliton pulse in birefringent optical fibers,�?? Opt. Express 10, 256-261 (2002). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-5-256">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-5-256</a>.
    [PubMed]
  11. N. Nishizawa and T. Goto, �??Ultrafast all optical switching by use of pulse trapping across zero-dispersion wavelength,�?? Opt. Express 11, 359-365 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-359">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-359</a>.
    [CrossRef] [PubMed]
  12. N. Nishizawa and T. Goto, �??Experimental analysis of ultrashort pulse propagation in optical fibers around zero-dispersion region using cross-correlation frequency resolved optical gating,�?? Opt. Express 8, 328-335 (2001) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-6-328">http://www.opticsexpress.org/ abstract.cfm?URI=OPEX-8-6-328</a>.
    [CrossRef] [PubMed]
  13. N. Nishizawa and T. Goto, �??Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,�?? IEEE Photon. Technol. Lett. 11, 325-327 (1999).
    [CrossRef]
  14. N. Nishizawa, R. Okamura, and T. Goto, �??Simultaneous generation of wavelength tunable two-colored femtosecond soliton pulses using optical fibers,�?? IEEE Photon. Technol. Lett. 11, 421-423 (1999).
    [CrossRef]

IEEE J. Sel. Top. in Quantum Electron. (1)

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, �??Silica-based functional fibers with enhanced nonlinearity and their applications,�?? IEEE J. Sel. Top. in Quantum Electron. 5, 1385-1391 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, �??A terahertz optical asymmetric demultiplexer (TOAD),�?? IEEE Photon. Technol. Lett. 5, 787-790 (1993).
[CrossRef]

S. Nakamura, Y. Ueno, and K. Tajima, �??Ultrafast (200-fs switching, 1.5 Tb/s demultiplexing) and high-repetition (10 GHz) operations of a polarization-discriminating symmetric Mach-Zehnder all optical switch,�?? IEEE Photon. Technol. Lett. 10, 1575-1577 (1998).
[CrossRef]

B. E. Olsson and D. J. Blumenthal, �??All-optical demultiplexing using fiber cross-phase modulation (XPM) and optical filtering,�?? IEEE Photon. Technol. Lett. 13, 875-877 (2001).
[CrossRef]

N. Nishizawa and T. Goto, �??Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,�?? IEEE Photon. Technol. Lett. 11, 325-327 (1999).
[CrossRef]

N. Nishizawa, R. Okamura, and T. Goto, �??Simultaneous generation of wavelength tunable two-colored femtosecond soliton pulses using optical fibers,�?? IEEE Photon. Technol. Lett. 11, 421-423 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. Nishizawa and T. Goto, �??Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,�?? Jpn. J. Appl. Phys. 40, L365-L367 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup for pulse trapping in birefringent fiber.

Fig. 2.
Fig. 2.

Principle of pulse trapping in a birefringent fiber: (a) propagation characteristics and (b) wavelength relation.

Fig. 3.
Fig. 3.

Variation of optical spectra for pulse trapping at 0, 20, and 100 m propagation length. The green line shows the spectrum of signal pulse when only the signal pulse is present.

Fig. 4.
Fig. 4.

Characteristics of (a) a wavelength shift of signal pulse as a function of the control pulse power and (b) trapping efficiency as a function of initial temporal separation.

Fig. 5.
Fig. 5.

Calculated results of ultrafast all-optical switching for a pulse train using pulse trapping.

Fig. 6.
Fig. 6.

Experimental setup of ultrafast all-optical switching for a pulse train using pulse trapping.

Fig. 7.
Fig. 7.

Observed spectrogram of output pulses for ultrafast all-optical switching using pulse trapping: (a) signal pulse train and (b, c) output pulses when the control pulse traps the second signal pulse. The fiber length is (b) 4 m and (c) 20 m.

Fig. 8.
Fig. 8.

Ultrafast all-optical switching for pulse train with temporal separation of 1.2 ps when the second signal pulse is (a) on and (b) off. The fiber length is 20 m.

Metrics