M. Felsberg and E. Jonsson, “Energy tensors: Quadratic phase invariant image operators,” DAGM Symposium, Mustererkennung, Wien, (2005),
M. Felsberg and G. H. Granlund, “Detection using Channel Clustering and the 2D Energy Tensor,” Pattern Recognition: 26th DAGM Symposium, Tübingen, Germany, (2004), pp. 103–110.
J. Bigun, T. Bigun, and K. Nilsson., “Recognition by symmetry derivatives and the generalized structure tensor,” IEEE Trans. Pattern Anal. Mach. Intell. 26, (2004).
[Crossref]
[PubMed]
M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, and N. I. Smith, et al., “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7–12 (2004).
[Crossref]
[PubMed]
B. Forster, T. Blu, and M. Unser., “A New Family of Complex Rotation-Covariant Multiresolution Bases in 2D,” Proceedings of the SPIE Conference on Mathematical Imaging: Wavelet Applications in Signal and Image Processing X, San Diego CA, USA, (2003), 475–479.
J. M. Huntley, “Fringe analysis today and tomorrow,” Speckle Metrology 2003, Trondheim, Norway, (2003), 167–174.
M. Servin, J. A. Quiroga, and J. L. Marroquin, “General n-dimensional quadrature transform and its application to interferogram demodulation,” J. Opt. Soc. Am. A 20, 925–934 (2003).
[Crossref]
J. A. Quiroga, M. Servin, and F. Cuevas, “Modulo two pi fringe orientation angle estimation by phase unwrapping with a regularized phase tracking algorithm,” J. Opt. Soc. Am. A 19, 1524–1531 (2002).
[Crossref]
M. Felsberg, “Low-Level Image Processing with the Structure Multivector,” PhD thesis. Christian-Albrechts-University of Kiel, 2002. http://www.isy.liu.se/~mfe/Diss.ps.gz
P. A. Fletcher and K. G. Larkin, “Direct Embedding and Detection of RST Invariant Watermarks,” IH2002, Fifth International Workshop on Information Hiding, Noordwijkerhout, The Netherlands, (2002), 129–144.
P.-E. Danielsson, Q. Lin, and Q.-Z. Ye, “Efficient detection of second degree variations in 2D and 3D images,” Journal of Vis. Commun. Image Represent. 12, 255–305 (2001).
[Crossref]
J. P. Da Costa, F. Le Pouliquen, C. Germain, and P. Baylou, “New operators for optimized orientation estimation,” ICIP 2001, Thessaloniki, Greece, (2001).
K. G. Larkin, “Topics in Multi-dimensional Signal Demodulation,” PhD thesis. Dept. of Physical Optics, University of Sydney, 2001. http://setis.library.usyd.edu.au/~thesis/adt-NU/public/
J. V. d. Weijer, L. J. v. Vliet, P. W. Verbeek, and M. v. Ginkel, “Curvature estimation in oriented patterns using curvilinear models applied to gradient vector fields,” IEEE Trans. Pattern Anal. Mach. Intell. 23, 1035–1042 (2001).
[Crossref]
K. G. Larkin, D. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns: I. General background to the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18, pp.1862–1870 (2001).
[Crossref]
K. G. Larkin, “Natural demodulation of two-dimensional fringe patterns: II. Stationary phase analysis of the spiral phase quadrature transform.,” J. Opt. Soc. Am. A 18, pp.1871–1881 (2001).
[Crossref]
K. G. Larkin, “A self-calibrating phase-shifting algorithm based on the natural demodulation of two-dimensional fringe patterns,” Opt. Express 9, 236–253 (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-5-236
[Crossref]
[PubMed]
M. Alonso and G. W. Forbes, “Measures of spread for periodic distributions and the associated uncertainty relations,” Am. J. Phys. 69, 340–347 (2000).
P. Kovesi, “Image Features From Phase Congruency,” Videre: A Journal of Computer Vision Research, MIT Press 1, (1999). http://mitpress.mit.edu/e-journals/Videre/001/v13.html
X. Zhou, J. P. Baird, and J. F. Arnold, “Fringe-Orientation Estimation by use of a Gaussian Gradient Filter and Neighboring-Direction Averaging,” Appl. Opt. 38, 795–804 (1999).
[Crossref]
R. Hamila, J. Astola, M. A. Cheikh, and M. Gabbouj, et al., “Teager energy and the ambiguity function,” IEEE Trans. Signal Process. 47, 260–262 (1999).
[Crossref]
L. Hong, Y. F. Wan, and A. Jain, “Fingerprint Image Enhancement - Algorithm and Performance Evaluation,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 777–789 (1998).
[Crossref]
J. Burke and H. Helmers, “Complex Division as a Common Basis for Calculating Phase Differences in Electronic Speckle Pattern Interferometry in One Step,” Appl. Opt. 37, 2589–2590 (1998).
[Crossref]
H. Canabal, J. A. Quiroga, and E. Bernabeu, “Automatic processing in moire deflectometry by local fringe direction calculation,” Appl. Opt. 37, 5894–5901 (1998).
[Crossref]
J. P. Havlicek, D. S. Harding, and A. C. Bovik, “Multicomponent Multidimensional Signals,” Multidimens. Syst. Signal Process. 9, 391–398 (1998).
[Crossref]
J. L. Marroquin, R. Rodriguez-Vera, and M. Servin, “Local phase from local orientation by solution of a sequence of linear systems,” J. Opt. Soc. Am. A 15, 1536–1544 (1998).
[Crossref]
A. C. Bovik, J. Havlicek, M. Desai, and D. Harding, “Limits on discrete modulated signals,” IEEE Trans. Signal Process. 45, 867–879 (1997).
[Crossref]
B. Jahne, Practical handbook on Image processing for Scientific applications, CRC Press, Boca Raton, Florida, 1997.
J. P. Havlicek, “AM-FM Image models,” PhD thesis. University of Texas, 1996. http://hotnsour.ou.edu/joebob/PdfPubs/JPHavlicekDiss.pdf
G. Krieger and C. Zetzche, “Nonlinear image operators for evaluation of local intrinsic dimension,” IEEE Trans. Image Process. 5, 1026–1042 (1996).
[Crossref]
[PubMed]
K. G. Larkin, “Efficient Demodulator for Bandpass Sampled AM Signals,” Electron. Lett. 32, 101–102 (1996).
[Crossref]
B. Strobel, “Processing of Interferometric Phase Maps As Complex-Valued Phasor Images,” Appl. Opt. 35, 2192–2198 (1996).
[Crossref]
[PubMed]
K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A 13, 832–843 (1996).
[Crossref]
J. G. Daugman and C. J. Downing, “Demodulation, predictive coding, and spatial vision,” J. Opt. Soc. Am. A 12, 641–660 (1995).
[Crossref]
P. Maragos and A. C. Bovik, “Image Demodulation Using Multidimensional Energy Separation” J. Opt. Soc. Am. A 12, pp.1867–1876 (1995).
[Crossref]
G. H. Granlund and H. Knutsson, Signal processing for computer vision, Kluwer, Dordrecht, Netherlands, 1995.
H. Knutsson and M. Andersson, “Robust N-Dimensional Orientation Estimation using Quadrature Filters and Tensor Whitening,” ICASSP ′94, Adelaide, Australia, (1994). http://www.cvl.isy.liu.se/ScOut/Publications/PaperInfo/ka94.html
A. C. Bovik and P. Maragos, “Conditions for positivity of an energy operator,” IEEE Trans. Sig. Process. 42, 469–471 (1994).
[Crossref]
A. Potamianos and P. Maragos, “A Comparison of the Energy Operator and the Hilbert Transform Approach to Signal and Speech Demodulation,” Signal Process. 37, 95–120 (1994).
[Crossref]
Q. Yu and K. Andresen, “Fringe-orientation maps and fringe skeleton extraction by the two-dimensional derivative-sign binary-fringe method,” Appl. Opt. 33, 6873–6878 (1994).
[Crossref]
[PubMed]
P. Maragos, J. F. Kaiser, and T. F. Quatieri, “On amplitude and frequency demodulation using energy operators,” IEEE Trans. Sig. Process. 41, 1532–1550 (1993).
[Crossref]
A. C. Bovik, P. Maragos, and T. F. Quatieri, “AM-FM energy detection and separation in noise using multiband energy operators,” IEEE Trans. Sig. Process. 41, 3245–3265 (1993).
[Crossref]
K. Andresen and Q. Yu, “Robust Phase Unwrapping By Spin Filtering Combined With a Phase Direction Map,” Optik 94, pp.145–149 (1993).
C. F. Shu and R. C. Jain, “Direct Estimation and Error Analysis For Oriented Patterns,” CVGIP-Image Understanding 58, 383–398 (1993).
[Crossref]
P. Maragos, A. C. Bovik, and T. F. Quatieri, “A multidimensional energy operator for image processing,” SPIE Conference on Visual Communications and Image Processing, Boston, MA, (1992), pp. 177–186.
P. Maragos, T. F. Quatieri, and J. F. Kaiser, “On separating amplitude from frequency modulations using energy operators,” Proc IEEE Int. Conf. ASSP, San Francisco, CA, (1992), 1–4.
P. Maragos, T. F. Quatieri, and J. F. Kaiser, “Speech nonlinearities, modulations, and energy operators,” Proc IEEE Int. Conf. ASSP, Toronto, Canada, (1991), 421–424.
T.-H. Yu and S. K. Mitra, “A novel nonlinear filter for image enhancement,” Image Processing algorithms and Techniques II, Proc. SPIE 1452 ,(1991), pp. 303–309.
S. K. Mitra, H. Li, I-S. Lin, and T-H. Yu, “A new class of nonlinear filters for image enhancement,” Int. Conf. Acoustics, Speech, and Signal Processing, Toronto, Canada, (1991), pp. 2525–2528.
J. F. Kaiser, “On a simple algorithm to calculate the 'energy' of a signal,” Proc IEEE Int. Conf. Acoust. Speech, Signal Processing, Albuquerque, NM, (1990), pp. 381–384.
S. Venkatesh and R. Owens, “On the classification of image features,” Pattern Recogn. Lett. 11, 339–349 (1990).
[Crossref]
J. G. Daugman, “Image analysis and compact coding by oriented Gabor primitives,” Image Understanding and Man Machine interface, 19–30, (1987).
M. Kass and A. Witkin, “Analyzing oriented patterns,” CVGIP 37, 362–385 (1987).
H. Knutsson, R. Wilson, and G. H. Granlund, “Anisotropic Non-Stationary Image Estimation and its Applications ┅ Part I: Restoration of Noisy Images,” IEEE Trans. Commun. 31, 388╌397 (1983).
[Crossref]
H. Knutsson, “Filtering and Reconstruction in Image Processing,” PhD. Linkoping University, 1982.
R. Penrose, “The topology of ridge systems,” Ann. Hum. Genet.,Lond. 42, 435–444 (1979).
[Crossref]
D. Gabor, “Theory of communications,” Journal of the IEE, 93, 429–457 (1947).
M. Alonso and G. W. Forbes, “Measures of spread for periodic distributions and the associated uncertainty relations,” Am. J. Phys. 69, 340–347 (2000).
H. Knutsson and M. Andersson, “Robust N-Dimensional Orientation Estimation using Quadrature Filters and Tensor Whitening,” ICASSP ′94, Adelaide, Australia, (1994). http://www.cvl.isy.liu.se/ScOut/Publications/PaperInfo/ka94.html
M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, and N. I. Smith, et al., “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7–12 (2004).
[Crossref]
[PubMed]
R. Hamila, J. Astola, M. A. Cheikh, and M. Gabbouj, et al., “Teager energy and the ambiguity function,” IEEE Trans. Signal Process. 47, 260–262 (1999).
[Crossref]
J. P. Da Costa, F. Le Pouliquen, C. Germain, and P. Baylou, “New operators for optimized orientation estimation,” ICIP 2001, Thessaloniki, Greece, (2001).
J. Bigun, T. Bigun, and K. Nilsson., “Recognition by symmetry derivatives and the generalized structure tensor,” IEEE Trans. Pattern Anal. Mach. Intell. 26, (2004).
[Crossref]
[PubMed]
J. Bigun, T. Bigun, and K. Nilsson., “Recognition by symmetry derivatives and the generalized structure tensor,” IEEE Trans. Pattern Anal. Mach. Intell. 26, (2004).
[Crossref]
[PubMed]
B. Forster, T. Blu, and M. Unser., “A New Family of Complex Rotation-Covariant Multiresolution Bases in 2D,” Proceedings of the SPIE Conference on Mathematical Imaging: Wavelet Applications in Signal and Image Processing X, San Diego CA, USA, (2003), 475–479.
J. P. Havlicek, D. S. Harding, and A. C. Bovik, “Multicomponent Multidimensional Signals,” Multidimens. Syst. Signal Process. 9, 391–398 (1998).
[Crossref]
A. C. Bovik, J. Havlicek, M. Desai, and D. Harding, “Limits on discrete modulated signals,” IEEE Trans. Signal Process. 45, 867–879 (1997).
[Crossref]
P. Maragos and A. C. Bovik, “Image Demodulation Using Multidimensional Energy Separation” J. Opt. Soc. Am. A 12, pp.1867–1876 (1995).
[Crossref]
A. C. Bovik and P. Maragos, “Conditions for positivity of an energy operator,” IEEE Trans. Sig. Process. 42, 469–471 (1994).
[Crossref]
A. C. Bovik, P. Maragos, and T. F. Quatieri, “AM-FM energy detection and separation in noise using multiband energy operators,” IEEE Trans. Sig. Process. 41, 3245–3265 (1993).
[Crossref]
P. Maragos, A. C. Bovik, and T. F. Quatieri, “A multidimensional energy operator for image processing,” SPIE Conference on Visual Communications and Image Processing, Boston, MA, (1992), pp. 177–186.
J. P. Havlicek, J. W. Havlicek, and A. C. Bovik, “The Analytic Image,” IEEE International Conference on Image Processing, Santa Barbara,California, (1997), 446–449.
R. N. Bracewell, The Fourier transform and its applications, McGraw Hill, New York, 1978.
M. C. Morrone and D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proceedings of the Royal Society of London, B 235, 221–245 (1988).
[Crossref]
R. Hamila, J. Astola, M. A. Cheikh, and M. Gabbouj, et al., “Teager energy and the ambiguity function,” IEEE Trans. Signal Process. 47, 260–262 (1999).
[Crossref]
J. P. Da Costa, F. Le Pouliquen, C. Germain, and P. Baylou, “New operators for optimized orientation estimation,” ICIP 2001, Thessaloniki, Greece, (2001).
P.-E. Danielsson, Q. Lin, and Q.-Z. Ye, “Efficient detection of second degree variations in 2D and 3D images,” Journal of Vis. Commun. Image Represent. 12, 255–305 (2001).
[Crossref]
A. C. Bovik, J. Havlicek, M. Desai, and D. Harding, “Limits on discrete modulated signals,” IEEE Trans. Signal Process. 45, 867–879 (1997).
[Crossref]
P. L. Duren, Theory of Hp Spaces, Dover Publication, Mineola, NY, 2000.
M. Felsberg and E. Jonsson, “Energy tensors: Quadratic phase invariant image operators,” DAGM Symposium, Mustererkennung, Wien, (2005),
M. Felsberg and G. H. Granlund, “Detection using Channel Clustering and the 2D Energy Tensor,” Pattern Recognition: 26th DAGM Symposium, Tübingen, Germany, (2004), pp. 103–110.
M. Felsberg, “Low-Level Image Processing with the Structure Multivector,” PhD thesis. Christian-Albrechts-University of Kiel, 2002. http://www.isy.liu.se/~mfe/Diss.ps.gz
M. Felsberg, “The GET Operator,” Dept. EE, Linkoping University, 2004.http://www.cvl.isy.liu.se/ScOut/Publications/
M. Felsberg and G. Sommer, “The monogenic signal,” Institut fur informatik, Chritian-Albrechts-Universitat, 2001.
M. Felsberg and U. Köthe, “Get: The connection between monogenic scale-space and gaussian derivatives,” Scale Space and PDE Methods in Computer Vision, ed. R. Kimmel, N. Sochen, and J. Weickert, LNCS, Springer, 2005) 3459: 192–203.
[Crossref]
P. A. Fletcher and K. G. Larkin, “Direct Embedding and Detection of RST Invariant Watermarks,” IH2002, Fifth International Workshop on Information Hiding, Noordwijkerhout, The Netherlands, (2002), 129–144.
M. Alonso and G. W. Forbes, “Measures of spread for periodic distributions and the associated uncertainty relations,” Am. J. Phys. 69, 340–347 (2000).
B. Forster, T. Blu, and M. Unser., “A New Family of Complex Rotation-Covariant Multiresolution Bases in 2D,” Proceedings of the SPIE Conference on Mathematical Imaging: Wavelet Applications in Signal and Image Processing X, San Diego CA, USA, (2003), 475–479.
R. Hamila, J. Astola, M. A. Cheikh, and M. Gabbouj, et al., “Teager energy and the ambiguity function,” IEEE Trans. Signal Process. 47, 260–262 (1999).
[Crossref]
D. Gabor, “Theory of communications,” Journal of the IEE, 93, 429–457 (1947).
J. P. Da Costa, F. Le Pouliquen, C. Germain, and P. Baylou, “New operators for optimized orientation estimation,” ICIP 2001, Thessaloniki, Greece, (2001).
J. V. d. Weijer, L. J. v. Vliet, P. W. Verbeek, and M. v. Ginkel, “Curvature estimation in oriented patterns using curvilinear models applied to gradient vector fields,” IEEE Trans. Pattern Anal. Mach. Intell. 23, 1035–1042 (2001).
[Crossref]
M. Felsberg and G. H. Granlund, “Detection using Channel Clustering and the 2D Energy Tensor,” Pattern Recognition: 26th DAGM Symposium, Tübingen, Germany, (2004), pp. 103–110.
G. H. Granlund and H. Knutsson, Signal processing for computer vision, Kluwer, Dordrecht, Netherlands, 1995.
H. Knutsson, R. Wilson, and G. H. Granlund, “Anisotropic Non-Stationary Image Estimation and its Applications ┅ Part I: Restoration of Noisy Images,” IEEE Trans. Commun. 31, 388╌397 (1983).
[Crossref]
R. Hamila, J. Astola, M. A. Cheikh, and M. Gabbouj, et al., “Teager energy and the ambiguity function,” IEEE Trans. Signal Process. 47, 260–262 (1999).
[Crossref]
A. C. Bovik, J. Havlicek, M. Desai, and D. Harding, “Limits on discrete modulated signals,” IEEE Trans. Signal Process. 45, 867–879 (1997).
[Crossref]
J. P. Havlicek, D. S. Harding, and A. C. Bovik, “Multicomponent Multidimensional Signals,” Multidimens. Syst. Signal Process. 9, 391–398 (1998).
[Crossref]
V. Havin and B. Joricke, The uncertainty principle in harmonic analysis, Springer-Verlag, Berlin, 1994.
A. C. Bovik, J. Havlicek, M. Desai, and D. Harding, “Limits on discrete modulated signals,” IEEE Trans. Signal Process. 45, 867–879 (1997).
[Crossref]
J. P. Havlicek, D. S. Harding, and A. C. Bovik, “Multicomponent Multidimensional Signals,” Multidimens. Syst. Signal Process. 9, 391–398 (1998).
[Crossref]
J. P. Havlicek, “AM-FM Image models,” PhD thesis. University of Texas, 1996. http://hotnsour.ou.edu/joebob/PdfPubs/JPHavlicekDiss.pdf
J. P. Havlicek, J. W. Havlicek, and A. C. Bovik, “The Analytic Image,” IEEE International Conference on Image Processing, Santa Barbara,California, (1997), 446–449.
J. P. Havlicek, J. W. Havlicek, and A. C. Bovik, “The Analytic Image,” IEEE International Conference on Image Processing, Santa Barbara,California, (1997), 446–449.
L. Hong, Y. F. Wan, and A. Jain, “Fingerprint Image Enhancement - Algorithm and Performance Evaluation,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 777–789 (1998).
[Crossref]
L. Hormander, Introduction to complex analysis in several variables, North Holland, Amsterdam, 1973.
J. M. Huntley, “Fringe analysis today and tomorrow,” Speckle Metrology 2003, Trondheim, Norway, (2003), 167–174.
B. Jahne, Practical handbook on Image processing for Scientific applications, CRC Press, Boca Raton, Florida, 1997.
L. Hong, Y. F. Wan, and A. Jain, “Fingerprint Image Enhancement - Algorithm and Performance Evaluation,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 777–789 (1998).
[Crossref]
C. F. Shu and R. C. Jain, “Direct Estimation and Error Analysis For Oriented Patterns,” CVGIP-Image Understanding 58, 383–398 (1993).
[Crossref]
M. Felsberg and E. Jonsson, “Energy tensors: Quadratic phase invariant image operators,” DAGM Symposium, Mustererkennung, Wien, (2005),
V. Havin and B. Joricke, The uncertainty principle in harmonic analysis, Springer-Verlag, Berlin, 1994.
P. Maragos, J. F. Kaiser, and T. F. Quatieri, “On amplitude and frequency demodulation using energy operators,” IEEE Trans. Sig. Process. 41, 1532–1550 (1993).
[Crossref]
P. Maragos, T. F. Quatieri, and J. F. Kaiser, “On separating amplitude from frequency modulations using energy operators,” Proc IEEE Int. Conf. ASSP, San Francisco, CA, (1992), 1–4.
P. Maragos, T. F. Quatieri, and J. F. Kaiser, “Speech nonlinearities, modulations, and energy operators,” Proc IEEE Int. Conf. ASSP, Toronto, Canada, (1991), 421–424.
J. F. Kaiser, “On a simple algorithm to calculate the 'energy' of a signal,” Proc IEEE Int. Conf. Acoust. Speech, Signal Processing, Albuquerque, NM, (1990), pp. 381–384.
M. Kass and A. Witkin, “Analyzing oriented patterns,” CVGIP 37, 362–385 (1987).
G. H. Granlund and H. Knutsson, Signal processing for computer vision, Kluwer, Dordrecht, Netherlands, 1995.
H. Knutsson and M. Andersson, “Robust N-Dimensional Orientation Estimation using Quadrature Filters and Tensor Whitening,” ICASSP ′94, Adelaide, Australia, (1994). http://www.cvl.isy.liu.se/ScOut/Publications/PaperInfo/ka94.html
H. Knutsson, R. Wilson, and G. H. Granlund, “Anisotropic Non-Stationary Image Estimation and its Applications ┅ Part I: Restoration of Noisy Images,” IEEE Trans. Commun. 31, 388╌397 (1983).
[Crossref]
H. Knutsson, “Filtering and Reconstruction in Image Processing,” PhD. Linkoping University, 1982.
M. Felsberg and U. Köthe, “Get: The connection between monogenic scale-space and gaussian derivatives,” Scale Space and PDE Methods in Computer Vision, ed. R. Kimmel, N. Sochen, and J. Weickert, LNCS, Springer, 2005) 3459: 192–203.
[Crossref]
P. Kovesi, “Image Features From Phase Congruency,” Videre: A Journal of Computer Vision Research, MIT Press 1, (1999). http://mitpress.mit.edu/e-journals/Videre/001/v13.html
G. Krieger and C. Zetzche, “Nonlinear image operators for evaluation of local intrinsic dimension,” IEEE Trans. Image Process. 5, 1026–1042 (1996).
[Crossref]
[PubMed]
M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, and N. I. Smith, et al., “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7–12 (2004).
[Crossref]
[PubMed]
P. A. Fletcher and K. G. Larkin, “Direct Embedding and Detection of RST Invariant Watermarks,” IH2002, Fifth International Workshop on Information Hiding, Noordwijkerhout, The Netherlands, (2002), 129–144.
K. G. Larkin, “A self-calibrating phase-shifting algorithm based on the natural demodulation of two-dimensional fringe patterns,” Opt. Express 9, 236–253 (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-5-236
[Crossref]
[PubMed]
K. G. Larkin, “Topics in Multi-dimensional Signal Demodulation,” PhD thesis. Dept. of Physical Optics, University of Sydney, 2001. http://setis.library.usyd.edu.au/~thesis/adt-NU/public/
K. G. Larkin, D. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns: I. General background to the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18, pp.1862–1870 (2001).
[Crossref]
K. G. Larkin, “Natural demodulation of two-dimensional fringe patterns: II. Stationary phase analysis of the spiral phase quadrature transform.,” J. Opt. Soc. Am. A 18, pp.1871–1881 (2001).
[Crossref]
K. G. Larkin, “Efficient Demodulator for Bandpass Sampled AM Signals,” Electron. Lett. 32, 101–102 (1996).
[Crossref]
K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A 13, 832–843 (1996).
[Crossref]
K. G. Larkin, “Natural demodulation of 2D fringe patterns,” Fringe′01 - The Fourth International Workshop on Automatic Processing of Fringe Patterns, Bremen, Germany, (2001), Elsevier, The Data Science Library, eds W. Juptner and W. Osten, ISBN : 2-84299-318-7
J. P. Da Costa, F. Le Pouliquen, C. Germain, and P. Baylou, “New operators for optimized orientation estimation,” ICIP 2001, Thessaloniki, Greece, (2001).
S. K. Mitra, H. Li, I-S. Lin, and T-H. Yu, “A new class of nonlinear filters for image enhancement,” Int. Conf. Acoustics, Speech, and Signal Processing, Toronto, Canada, (1991), pp. 2525–2528.
S. K. Mitra, H. Li, I-S. Lin, and T-H. Yu, “A new class of nonlinear filters for image enhancement,” Int. Conf. Acoustics, Speech, and Signal Processing, Toronto, Canada, (1991), pp. 2525–2528.
P.-E. Danielsson, Q. Lin, and Q.-Z. Ye, “Efficient detection of second degree variations in 2D and 3D images,” Journal of Vis. Commun. Image Represent. 12, 255–305 (2001).
[Crossref]
P. Maragos and A. C. Bovik, “Image Demodulation Using Multidimensional Energy Separation” J. Opt. Soc. Am. A 12, pp.1867–1876 (1995).
[Crossref]
A. Potamianos and P. Maragos, “A Comparison of the Energy Operator and the Hilbert Transform Approach to Signal and Speech Demodulation,” Signal Process. 37, 95–120 (1994).
[Crossref]
A. C. Bovik and P. Maragos, “Conditions for positivity of an energy operator,” IEEE Trans. Sig. Process. 42, 469–471 (1994).
[Crossref]
P. Maragos, J. F. Kaiser, and T. F. Quatieri, “On amplitude and frequency demodulation using energy operators,” IEEE Trans. Sig. Process. 41, 1532–1550 (1993).
[Crossref]
A. C. Bovik, P. Maragos, and T. F. Quatieri, “AM-FM energy detection and separation in noise using multiband energy operators,” IEEE Trans. Sig. Process. 41, 3245–3265 (1993).
[Crossref]
P. Maragos, T. F. Quatieri, and J. F. Kaiser, “On separating amplitude from frequency modulations using energy operators,” Proc IEEE Int. Conf. ASSP, San Francisco, CA, (1992), 1–4.
P. Maragos, A. C. Bovik, and T. F. Quatieri, “A multidimensional energy operator for image processing,” SPIE Conference on Visual Communications and Image Processing, Boston, MA, (1992), pp. 177–186.
P. Maragos, T. F. Quatieri, and J. F. Kaiser, “Speech nonlinearities, modulations, and energy operators,” Proc IEEE Int. Conf. ASSP, Toronto, Canada, (1991), 421–424.
M. Servin, J. A. Quiroga, and J. L. Marroquin, “General n-dimensional quadrature transform and its application to interferogram demodulation,” J. Opt. Soc. Am. A 20, 925–934 (2003).
[Crossref]
J. L. Marroquin, R. Rodriguez-Vera, and M. Servin, “Local phase from local orientation by solution of a sequence of linear systems,” J. Opt. Soc. Am. A 15, 1536–1544 (1998).
[Crossref]
T.-H. Yu and S. K. Mitra, “A novel nonlinear filter for image enhancement,” Image Processing algorithms and Techniques II, Proc. SPIE 1452 ,(1991), pp. 303–309.
S. K. Mitra, H. Li, I-S. Lin, and T-H. Yu, “A new class of nonlinear filters for image enhancement,” Int. Conf. Acoustics, Speech, and Signal Processing, Toronto, Canada, (1991), pp. 2525–2528.
M. C. Morrone and D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proceedings of the Royal Society of London, B 235, 221–245 (1988).
[Crossref]
J. Bigun, T. Bigun, and K. Nilsson., “Recognition by symmetry derivatives and the generalized structure tensor,” IEEE Trans. Pattern Anal. Mach. Intell. 26, (2004).
[Crossref]
[PubMed]
S. Venkatesh and R. Owens, “On the classification of image features,” Pattern Recogn. Lett. 11, 339–349 (1990).
[Crossref]
R. Penrose, “The topology of ridge systems,” Ann. Hum. Genet.,Lond. 42, 435–444 (1979).
[Crossref]
A. Potamianos and P. Maragos, “A Comparison of the Energy Operator and the Hilbert Transform Approach to Signal and Speech Demodulation,” Signal Process. 37, 95–120 (1994).
[Crossref]
P. Maragos, J. F. Kaiser, and T. F. Quatieri, “On amplitude and frequency demodulation using energy operators,” IEEE Trans. Sig. Process. 41, 1532–1550 (1993).
[Crossref]
A. C. Bovik, P. Maragos, and T. F. Quatieri, “AM-FM energy detection and separation in noise using multiband energy operators,” IEEE Trans. Sig. Process. 41, 3245–3265 (1993).
[Crossref]
P. Maragos, T. F. Quatieri, and J. F. Kaiser, “On separating amplitude from frequency modulations using energy operators,” Proc IEEE Int. Conf. ASSP, San Francisco, CA, (1992), 1–4.
P. Maragos, A. C. Bovik, and T. F. Quatieri, “A multidimensional energy operator for image processing,” SPIE Conference on Visual Communications and Image Processing, Boston, MA, (1992), pp. 177–186.
P. Maragos, T. F. Quatieri, and J. F. Kaiser, “Speech nonlinearities, modulations, and energy operators,” Proc IEEE Int. Conf. ASSP, Toronto, Canada, (1991), 421–424.
M. Servin, J. A. Quiroga, and J. L. Marroquin, “General n-dimensional quadrature transform and its application to interferogram demodulation,” J. Opt. Soc. Am. A 20, 925–934 (2003).
[Crossref]
J. A. Quiroga, M. Servin, and F. Cuevas, “Modulo two pi fringe orientation angle estimation by phase unwrapping with a regularized phase tracking algorithm,” J. Opt. Soc. Am. A 19, 1524–1531 (2002).
[Crossref]
H. Canabal, J. A. Quiroga, and E. Bernabeu, “Automatic processing in moire deflectometry by local fringe direction calculation,” Appl. Opt. 37, 5894–5901 (1998).
[Crossref]
B. Rieger and J. van Vliet Lucas, 22(6), 2004, “A systematic approach to nD orientation representation,” Image Vision Comput. 22, 453–459 (2004).
[Crossref]
M. Servin, J. A. Quiroga, and J. L. Marroquin, “General n-dimensional quadrature transform and its application to interferogram demodulation,” J. Opt. Soc. Am. A 20, 925–934 (2003).
[Crossref]
J. A. Quiroga, M. Servin, and F. Cuevas, “Modulo two pi fringe orientation angle estimation by phase unwrapping with a regularized phase tracking algorithm,” J. Opt. Soc. Am. A 19, 1524–1531 (2002).
[Crossref]
J. L. Marroquin, R. Rodriguez-Vera, and M. Servin, “Local phase from local orientation by solution of a sequence of linear systems,” J. Opt. Soc. Am. A 15, 1536–1544 (1998).
[Crossref]
M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, and N. I. Smith, et al., “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7–12 (2004).
[Crossref]
[PubMed]
C. F. Shu and R. C. Jain, “Direct Estimation and Error Analysis For Oriented Patterns,” CVGIP-Image Understanding 58, 383–398 (1993).
[Crossref]
M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, and N. I. Smith, et al., “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7–12 (2004).
[Crossref]
[PubMed]
M. Felsberg and G. Sommer, “The monogenic signal,” Institut fur informatik, Chritian-Albrechts-Universitat, 2001.
E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970.
H. M. Teager and S. M. Teager, “Evidence for nonlinear sound production mechanisms in the vocal tract,” Speech production and speech modelling, ed. Hardcastle, W. J. and A. Marchal, (France: NATO Advanced Study Institute, Series D, 1989) pp. 55.
H. M. Teager and S. M. Teager, “Evidence for nonlinear sound production mechanisms in the vocal tract,” Speech production and speech modelling, ed. Hardcastle, W. J. and A. Marchal, (France: NATO Advanced Study Institute, Series D, 1989) pp. 55.
S. Thurnhofer, “Two-dimensional Teager filters,” Nonlinear Image Processing, ed. S. K. Mitra and G. L. Sicuranza, (San Diego: Academic Press, 2001) 167–202.
[Crossref]
B. Forster, T. Blu, and M. Unser., “A New Family of Complex Rotation-Covariant Multiresolution Bases in 2D,” Proceedings of the SPIE Conference on Mathematical Imaging: Wavelet Applications in Signal and Image Processing X, San Diego CA, USA, (2003), 475–479.
B. Rieger and J. van Vliet Lucas, 22(6), 2004, “A systematic approach to nD orientation representation,” Image Vision Comput. 22, 453–459 (2004).
[Crossref]
S. Venkatesh and R. Owens, “On the classification of image features,” Pattern Recogn. Lett. 11, 339–349 (1990).
[Crossref]
J. V. d. Weijer, L. J. v. Vliet, P. W. Verbeek, and M. v. Ginkel, “Curvature estimation in oriented patterns using curvilinear models applied to gradient vector fields,” IEEE Trans. Pattern Anal. Mach. Intell. 23, 1035–1042 (2001).
[Crossref]
J. V. d. Weijer, L. J. v. Vliet, P. W. Verbeek, and M. v. Ginkel, “Curvature estimation in oriented patterns using curvilinear models applied to gradient vector fields,” IEEE Trans. Pattern Anal. Mach. Intell. 23, 1035–1042 (2001).
[Crossref]
L. Hong, Y. F. Wan, and A. Jain, “Fingerprint Image Enhancement - Algorithm and Performance Evaluation,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 777–789 (1998).
[Crossref]
J. V. d. Weijer, L. J. v. Vliet, P. W. Verbeek, and M. v. Ginkel, “Curvature estimation in oriented patterns using curvilinear models applied to gradient vector fields,” IEEE Trans. Pattern Anal. Mach. Intell. 23, 1035–1042 (2001).
[Crossref]
O. Wilde, “Act 1,” The Importance of Being Earnest, 1899.
H. Knutsson, R. Wilson, and G. H. Granlund, “Anisotropic Non-Stationary Image Estimation and its Applications ┅ Part I: Restoration of Noisy Images,” IEEE Trans. Commun. 31, 388╌397 (1983).
[Crossref]
M. Kass and A. Witkin, “Analyzing oriented patterns,” CVGIP 37, 362–385 (1987).
P.-E. Danielsson, Q. Lin, and Q.-Z. Ye, “Efficient detection of second degree variations in 2D and 3D images,” Journal of Vis. Commun. Image Represent. 12, 255–305 (2001).
[Crossref]
T.-H. Yu and S. K. Mitra, “A novel nonlinear filter for image enhancement,” Image Processing algorithms and Techniques II, Proc. SPIE 1452 ,(1991), pp. 303–309.
S. K. Mitra, H. Li, I-S. Lin, and T-H. Yu, “A new class of nonlinear filters for image enhancement,” Int. Conf. Acoustics, Speech, and Signal Processing, Toronto, Canada, (1991), pp. 2525–2528.
G. Krieger and C. Zetzche, “Nonlinear image operators for evaluation of local intrinsic dimension,” IEEE Trans. Image Process. 5, 1026–1042 (1996).
[Crossref]
[PubMed]
M. Alonso and G. W. Forbes, “Measures of spread for periodic distributions and the associated uncertainty relations,” Am. J. Phys. 69, 340–347 (2000).
R. Penrose, “The topology of ridge systems,” Ann. Hum. Genet.,Lond. 42, 435–444 (1979).
[Crossref]
Q. Yu and K. Andresen, “Fringe-orientation maps and fringe skeleton extraction by the two-dimensional derivative-sign binary-fringe method,” Appl. Opt. 33, 6873–6878 (1994).
[Crossref]
[PubMed]
J. Burke and H. Helmers, “Complex Division as a Common Basis for Calculating Phase Differences in Electronic Speckle Pattern Interferometry in One Step,” Appl. Opt. 37, 2589–2590 (1998).
[Crossref]
H. Canabal, J. A. Quiroga, and E. Bernabeu, “Automatic processing in moire deflectometry by local fringe direction calculation,” Appl. Opt. 37, 5894–5901 (1998).
[Crossref]
X. Zhou, J. P. Baird, and J. F. Arnold, “Fringe-Orientation Estimation by use of a Gaussian Gradient Filter and Neighboring-Direction Averaging,” Appl. Opt. 38, 795–804 (1999).
[Crossref]
B. Strobel, “Processing of Interferometric Phase Maps As Complex-Valued Phasor Images,” Appl. Opt. 35, 2192–2198 (1996).
[Crossref]
[PubMed]
B. Jahne, Practical handbook on Image processing for Scientific applications, CRC Press, Boca Raton, Florida, 1997.
M. Kass and A. Witkin, “Analyzing oriented patterns,” CVGIP 37, 362–385 (1987).
C. F. Shu and R. C. Jain, “Direct Estimation and Error Analysis For Oriented Patterns,” CVGIP-Image Understanding 58, 383–398 (1993).
[Crossref]
M. Felsberg and E. Jonsson, “Energy tensors: Quadratic phase invariant image operators,” DAGM Symposium, Mustererkennung, Wien, (2005),
K. G. Larkin, “Efficient Demodulator for Bandpass Sampled AM Signals,” Electron. Lett. 32, 101–102 (1996).
[Crossref]
H. Knutsson and M. Andersson, “Robust N-Dimensional Orientation Estimation using Quadrature Filters and Tensor Whitening,” ICASSP ′94, Adelaide, Australia, (1994). http://www.cvl.isy.liu.se/ScOut/Publications/PaperInfo/ka94.html
J. P. Da Costa, F. Le Pouliquen, C. Germain, and P. Baylou, “New operators for optimized orientation estimation,” ICIP 2001, Thessaloniki, Greece, (2001).
H. Knutsson, R. Wilson, and G. H. Granlund, “Anisotropic Non-Stationary Image Estimation and its Applications ┅ Part I: Restoration of Noisy Images,” IEEE Trans. Commun. 31, 388╌397 (1983).
[Crossref]
G. Krieger and C. Zetzche, “Nonlinear image operators for evaluation of local intrinsic dimension,” IEEE Trans. Image Process. 5, 1026–1042 (1996).
[Crossref]
[PubMed]
L. Hong, Y. F. Wan, and A. Jain, “Fingerprint Image Enhancement - Algorithm and Performance Evaluation,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 777–789 (1998).
[Crossref]
J. Bigun, T. Bigun, and K. Nilsson., “Recognition by symmetry derivatives and the generalized structure tensor,” IEEE Trans. Pattern Anal. Mach. Intell. 26, (2004).
[Crossref]
[PubMed]
J. V. d. Weijer, L. J. v. Vliet, P. W. Verbeek, and M. v. Ginkel, “Curvature estimation in oriented patterns using curvilinear models applied to gradient vector fields,” IEEE Trans. Pattern Anal. Mach. Intell. 23, 1035–1042 (2001).
[Crossref]
P. Maragos, J. F. Kaiser, and T. F. Quatieri, “On amplitude and frequency demodulation using energy operators,” IEEE Trans. Sig. Process. 41, 1532–1550 (1993).
[Crossref]
A. C. Bovik, P. Maragos, and T. F. Quatieri, “AM-FM energy detection and separation in noise using multiband energy operators,” IEEE Trans. Sig. Process. 41, 3245–3265 (1993).
[Crossref]
A. C. Bovik and P. Maragos, “Conditions for positivity of an energy operator,” IEEE Trans. Sig. Process. 42, 469–471 (1994).
[Crossref]
A. C. Bovik, J. Havlicek, M. Desai, and D. Harding, “Limits on discrete modulated signals,” IEEE Trans. Signal Process. 45, 867–879 (1997).
[Crossref]
R. Hamila, J. Astola, M. A. Cheikh, and M. Gabbouj, et al., “Teager energy and the ambiguity function,” IEEE Trans. Signal Process. 47, 260–262 (1999).
[Crossref]
T.-H. Yu and S. K. Mitra, “A novel nonlinear filter for image enhancement,” Image Processing algorithms and Techniques II, Proc. SPIE 1452 ,(1991), pp. 303–309.
J. G. Daugman, “Image analysis and compact coding by oriented Gabor primitives,” Image Understanding and Man Machine interface, 19–30, (1987).
S. K. Mitra, H. Li, I-S. Lin, and T-H. Yu, “A new class of nonlinear filters for image enhancement,” Int. Conf. Acoustics, Speech, and Signal Processing, Toronto, Canada, (1991), pp. 2525–2528.
M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, and N. I. Smith, et al., “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214, 7–12 (2004).
[Crossref]
[PubMed]
K. G. Larkin, D. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns: I. General background to the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18, pp.1862–1870 (2001).
[Crossref]
K. G. Larkin, “Natural demodulation of two-dimensional fringe patterns: II. Stationary phase analysis of the spiral phase quadrature transform.,” J. Opt. Soc. Am. A 18, pp.1871–1881 (2001).
[Crossref]
J. L. Marroquin, R. Rodriguez-Vera, and M. Servin, “Local phase from local orientation by solution of a sequence of linear systems,” J. Opt. Soc. Am. A 15, 1536–1544 (1998).
[Crossref]
E. H. Adelson and J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
[Crossref]
[PubMed]
J. J. Koenderink and W. Richards, “Two-dimensional curvature operators,” J. Opt. Soc. Am. A 5, 1136–1141 (1988).
[Crossref]
K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A 13, 832–843 (1996).
[Crossref]
J. G. Daugman and C. J. Downing, “Demodulation, predictive coding, and spatial vision,” J. Opt. Soc. Am. A 12, 641–660 (1995).
[Crossref]
P. Maragos and A. C. Bovik, “Image Demodulation Using Multidimensional Energy Separation” J. Opt. Soc. Am. A 12, pp.1867–1876 (1995).
[Crossref]
J. A. Quiroga, M. Servin, and F. Cuevas, “Modulo two pi fringe orientation angle estimation by phase unwrapping with a regularized phase tracking algorithm,” J. Opt. Soc. Am. A 19, 1524–1531 (2002).
[Crossref]
M. Servin, J. A. Quiroga, and J. L. Marroquin, “General n-dimensional quadrature transform and its application to interferogram demodulation,” J. Opt. Soc. Am. A 20, 925–934 (2003).
[Crossref]
D. Gabor, “Theory of communications,” Journal of the IEE, 93, 429–457 (1947).
P.-E. Danielsson, Q. Lin, and Q.-Z. Ye, “Efficient detection of second degree variations in 2D and 3D images,” Journal of Vis. Commun. Image Represent. 12, 255–305 (2001).
[Crossref]
J. P. Havlicek, D. S. Harding, and A. C. Bovik, “Multicomponent Multidimensional Signals,” Multidimens. Syst. Signal Process. 9, 391–398 (1998).
[Crossref]
K. Andresen and Q. Yu, “Robust Phase Unwrapping By Spin Filtering Combined With a Phase Direction Map,” Optik 94, pp.145–149 (1993).
S. Venkatesh and R. Owens, “On the classification of image features,” Pattern Recogn. Lett. 11, 339–349 (1990).
[Crossref]
M. Felsberg and G. H. Granlund, “Detection using Channel Clustering and the 2D Energy Tensor,” Pattern Recognition: 26th DAGM Symposium, Tübingen, Germany, (2004), pp. 103–110.
M. Felsberg, “Low-Level Image Processing with the Structure Multivector,” PhD thesis. Christian-Albrechts-University of Kiel, 2002. http://www.isy.liu.se/~mfe/Diss.ps.gz
K. G. Larkin, “Topics in Multi-dimensional Signal Demodulation,” PhD thesis. Dept. of Physical Optics, University of Sydney, 2001. http://setis.library.usyd.edu.au/~thesis/adt-NU/public/
J. P. Havlicek, “AM-FM Image models,” PhD thesis. University of Texas, 1996. http://hotnsour.ou.edu/joebob/PdfPubs/JPHavlicekDiss.pdf
H. Knutsson, “Filtering and Reconstruction in Image Processing,” PhD. Linkoping University, 1982.
J. F. Kaiser, “On a simple algorithm to calculate the 'energy' of a signal,” Proc IEEE Int. Conf. Acoust. Speech, Signal Processing, Albuquerque, NM, (1990), pp. 381–384.
P. Maragos, T. F. Quatieri, and J. F. Kaiser, “On separating amplitude from frequency modulations using energy operators,” Proc IEEE Int. Conf. ASSP, San Francisco, CA, (1992), 1–4.
P. Maragos, T. F. Quatieri, and J. F. Kaiser, “Speech nonlinearities, modulations, and energy operators,” Proc IEEE Int. Conf. ASSP, Toronto, Canada, (1991), 421–424.
M. C. Morrone and D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proceedings of the Royal Society of London, B 235, 221–245 (1988).
[Crossref]
B. Forster, T. Blu, and M. Unser., “A New Family of Complex Rotation-Covariant Multiresolution Bases in 2D,” Proceedings of the SPIE Conference on Mathematical Imaging: Wavelet Applications in Signal and Image Processing X, San Diego CA, USA, (2003), 475–479.
A. Potamianos and P. Maragos, “A Comparison of the Energy Operator and the Hilbert Transform Approach to Signal and Speech Demodulation,” Signal Process. 37, 95–120 (1994).
[Crossref]
J. M. Huntley, “Fringe analysis today and tomorrow,” Speckle Metrology 2003, Trondheim, Norway, (2003), 167–174.
P. Maragos, A. C. Bovik, and T. F. Quatieri, “A multidimensional energy operator for image processing,” SPIE Conference on Visual Communications and Image Processing, Boston, MA, (1992), pp. 177–186.
P. Kovesi, “Image Features From Phase Congruency,” Videre: A Journal of Computer Vision Research, MIT Press 1, (1999). http://mitpress.mit.edu/e-journals/Videre/001/v13.html
R. N. Bracewell, The Fourier transform and its applications, McGraw Hill, New York, 1978.
V. Havin and B. Joricke, The uncertainty principle in harmonic analysis, Springer-Verlag, Berlin, 1994.
S. Thurnhofer, “Two-dimensional Teager filters,” Nonlinear Image Processing, ed. S. K. Mitra and G. L. Sicuranza, (San Diego: Academic Press, 2001) 167–202.
[Crossref]
P. L. Duren, Theory of Hp Spaces, Dover Publication, Mineola, NY, 2000.
L. Hormander, Introduction to complex analysis in several variables, North Holland, Amsterdam, 1973.
NIST Image Group's Fingerprint Research, Fingerprint Test Data on CD-ROM. http://www.itl.nist.gov/iad/894.03/fing/fing.html
M. Felsberg and U. Köthe, “Get: The connection between monogenic scale-space and gaussian derivatives,” Scale Space and PDE Methods in Computer Vision, ed. R. Kimmel, N. Sochen, and J. Weickert, LNCS, Springer, 2005) 3459: 192–203.
[Crossref]
FFTW: Fastest Fourier Transform in the West., “FFT Benchmarks,” (2005). http://www.fftw.org/speed/
M. Felsberg, “The GET Operator,” Dept. EE, Linkoping University, 2004.http://www.cvl.isy.liu.se/ScOut/Publications/
B. Rieger and J. van Vliet Lucas, 22(6), 2004, “A systematic approach to nD orientation representation,” Image Vision Comput. 22, 453–459 (2004).
[Crossref]
M. Felsberg and G. Sommer, “The monogenic signal,” Institut fur informatik, Chritian-Albrechts-Universitat, 2001.
J. P. Havlicek, J. W. Havlicek, and A. C. Bovik, “The Analytic Image,” IEEE International Conference on Image Processing, Santa Barbara,California, (1997), 446–449.
E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970.
P. A. Fletcher and K. G. Larkin, “Direct Embedding and Detection of RST Invariant Watermarks,” IH2002, Fifth International Workshop on Information Hiding, Noordwijkerhout, The Netherlands, (2002), 129–144.
K. G. Larkin, “Natural demodulation of 2D fringe patterns,” Fringe′01 - The Fourth International Workshop on Automatic Processing of Fringe Patterns, Bremen, Germany, (2001), Elsevier, The Data Science Library, eds W. Juptner and W. Osten, ISBN : 2-84299-318-7
H. M. Teager and S. M. Teager, “Evidence for nonlinear sound production mechanisms in the vocal tract,” Speech production and speech modelling, ed. Hardcastle, W. J. and A. Marchal, (France: NATO Advanced Study Institute, Series D, 1989) pp. 55.
O. Wilde, “Act 1,” The Importance of Being Earnest, 1899.
G. H. Granlund and H. Knutsson, Signal processing for computer vision, Kluwer, Dordrecht, Netherlands, 1995.