Abstract

A novel interpretation of the Ginzburg-Landau (GL) chirped solitary wave yields a realistic profile of the chirp-free pulse with minimum width generated by fiber mode-locked lasers. The minimum pulse width is evaluated for negative and positive average dispersion regimes of laser operation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. A. Haus, E. P. Ippen, and K. Tamura, �??Additive-pulse mode-locking in fiber lasers,�?? IEEE J. Quantum Electron. 30, 200 (1994).
    [CrossRef]
  2. M. J. Guy, D. U. Noske, and J. R. Taylor, �??Generation of femtosecond soliton pulses by passive mode-locking of an ytterbium-erbium figure-of-eight fibre laser,�?? Opt. Lett. 18, 1447 (1993).
    [CrossRef] [PubMed]
  3. K. Tamura, E. P. Ippen, H. A. Haus, and I. E. Nelson, �??77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,�?? Opt. Lett. 18, 1080 (1993).
    [CrossRef] [PubMed]
  4. P. A. Bélanger, L. Gagnon, and C. Paré, �??Solitary pulses in an amplified nonlinear dispersive medium,�??�?? Opt. Lett. 14, 943 (1989).
    [CrossRef] [PubMed]
  5. K. Tamura, C. R. Doerr, L. E. Nelson, H. A. Haus, and E. P. Ippen, �??Technique for obtaining high-energy ultrashort pulses from an additive-pulse mode-locked erbium-doped fiber ring laser,�??�?? Opt. Lett. 19, 46 (1994).
    [CrossRef] [PubMed]
  6. C. Paré, L. Gagnon, and P. A. Bélanger, �??Spatial solitary wave in a weakly saturated amplifying/absorbing medium,�??�?? Opt. Comm. 74, 224 (1989).
    [CrossRef]
  7. A. Gajadharsingh, and P. A. Bélanger, �??Dispersion management in the zero-average dispersion regime as the interference of complex-conjugate pulses,�??�?? Opt. Comm. 241, 377 (2004).
    [CrossRef]
  8. S. K. Turitsyn, J. H. B. Nijhof, V. K. Mezentsev, and N. J. Doran, �??Symmetries, chirp-free points, and bistability in dispersion-managed fiber lines,�?? Opt. Lett. 24, 1871 (1999).
    [CrossRef]
  9. C. Paré, and P. A. Bélanger, �??Spectral domain analysis of dispersion management without averaging,�??�?? Opt. Lett. 25, 881 (2000).
    [CrossRef]
  10. K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, �??Soliton versus nonsoliton operation of fiber ring lasers,�??�?? Appl. Phys. Lett. 64, 149 (1994).
    [CrossRef]
  11. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, �??Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,�??�?? IEEE J. Quantum Electron. 31, 591 (1995).
    [CrossRef]
  12. Ph. Grelu, F. Belhache, and F. Gutty, �??Phase-locked soliton pairs in a stretched-pulse fiber laser,�??�?? Opt. Lett. 27, 966 (2002).
    [CrossRef]
  13. Ph. Grelu, J. Béal, and J. M. Soto-Crespo, �??Soliton pairs in a fiber laser:from anomalous to normal average dispersion regime,�??�?? Opt. Exp. 11, 2238 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2238.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2238.</a>
    [CrossRef]
  14. M. Olivier, V. Roy, and M. Piché, �??Pulse collisions in the stretched-pulse fiber laser,�??�?? Opt. Lett. 29, 1461 (2004).
    [CrossRef] [PubMed]
  15. V. Roy, M. Olivier, F. Babin, and M. Piché, �??Dynamics of periodic pulse collisions in a strongly dissipative-dispersive system,�??�?? Phys. Rev. Lett. 94, (2005).
    [CrossRef] [PubMed]
  16. Ph. Grelu, and N. Akhmediev, �??Group interaction of dissipative solitons in a laser cavity: the case of 2+1,�??�?? Opt. Exp. 12, 3184 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3184">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3184.</a>.
    [CrossRef]
  17. M.L. Dennis and Irl N. Duling III, Experimental Study of Sideband Generation in Femtosecond Fiber Lasers, IEEE J. Quantum Electron. QE-30, 1469-1477 (1994)
    [CrossRef]

Appl. Phys. Lett. (1)

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, �??Soliton versus nonsoliton operation of fiber ring lasers,�??�?? Appl. Phys. Lett. 64, 149 (1994).
[CrossRef]

IEEE J. Quantum Electron. (3)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, �??Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,�??�?? IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

M.L. Dennis and Irl N. Duling III, Experimental Study of Sideband Generation in Femtosecond Fiber Lasers, IEEE J. Quantum Electron. QE-30, 1469-1477 (1994)
[CrossRef]

H. A. Haus, E. P. Ippen, and K. Tamura, �??Additive-pulse mode-locking in fiber lasers,�?? IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

Opt. Comm. (2)

C. Paré, L. Gagnon, and P. A. Bélanger, �??Spatial solitary wave in a weakly saturated amplifying/absorbing medium,�??�?? Opt. Comm. 74, 224 (1989).
[CrossRef]

A. Gajadharsingh, and P. A. Bélanger, �??Dispersion management in the zero-average dispersion regime as the interference of complex-conjugate pulses,�??�?? Opt. Comm. 241, 377 (2004).
[CrossRef]

Opt. Exp. (2)

Ph. Grelu, and N. Akhmediev, �??Group interaction of dissipative solitons in a laser cavity: the case of 2+1,�??�?? Opt. Exp. 12, 3184 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3184">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3184.</a>.
[CrossRef]

Ph. Grelu, J. Béal, and J. M. Soto-Crespo, �??Soliton pairs in a fiber laser:from anomalous to normal average dispersion regime,�??�?? Opt. Exp. 11, 2238 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2238.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2238.</a>
[CrossRef]

Opt. Lett. (8)

Phys. Rev. Lett. (1)

V. Roy, M. Olivier, F. Babin, and M. Piché, �??Dynamics of periodic pulse collisions in a strongly dissipative-dispersive system,�??�?? Phys. Rev. Lett. 94, (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Temporal and spectral profiles corresponding to Eqs. (2) and (3) for various values of β.

Fig. 2.
Fig. 2.

TBP (dotted line) and TBV (full line) of the pulse given by Eq. (2) as a function of the chirp parameter β

Fig. 3.
Fig. 3.

The minimum pulse width normalized to the gain and bandwidth plotted as a function of β.

Fig. 4.
Fig. 4.

Relation between the minimum pulse, dispersion and the characteristic parameter β.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

V = V 0 sec h ( ατ ) exp [ ln ( sec h ( ατ ) ) ] exp [ i Γ x ]
V ˜ ( ω ) 2 ~ sec h [ π 2 ( β + ω α ) ] sec h [ π 2 ( β ω α ) ]
V ( τ ) ~ V ˜ ( ω ) e iωτ
υ f = 2 α π 2 sinh 1 [ cosh ( π 2 β ) ]
τ f 2 gL T 0 2 = ( π 4 12 Γ L ) ( ν f τ f ) 2 ( 1 + β 2 ) ( 2 + β 2 ) β ( sinh 1 [ cosh ( π 2 β ) ] ) 2
τ f = 0.97 2 π Γ L β 2 L
τ f = β 2 L
( β 2 2 ig T 0 2 2 ) V ττ i ( g l ) V γ 0 V 2 V + i V x = 0
V = V 0 sec h ( ατ ) exp [ ln ( sec h ( ατ ) ) ] exp [ i Γ x ]
Γ = ( g l ) ( β 2 + 2 ) β
V 0 2 = ( g l ) γ 0 ( β 2 + 4 ) β
α 2 = 3 g T 0 2 ( g l ) ( β 2 + 1 )
β 2 2 β = 3 β 2 2 g T 0 2
P 0 2 = 4 3 γ 0 2 ( g l ) g T 0 2 [ ( β 2 + 4 ) 2 ( β 2 + 1 ) β 2 ]

Metrics